cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074447 Number of 4-ary Lyndon words of length n over GF(4) with trace 0 and subtrace 1.

This page as a plain text file.
%I A074447 #21 Jul 21 2021 17:46:08
%S A074447 0,0,1,2,12,40,144,496,1813,6528,23808,87210,322560,1198080,4473647,
%T A074447 16775168,63160320,238605640,904200192,3435947622,13089411609,
%U A074447 49977753600,191219367936,733007402160,2814749599332,10825959997440,41699995927744,160842839041170,621186153185280
%N A074447 Number of 4-ary Lyndon words of length n over GF(4) with trace 0 and subtrace 1.
%C A074447 Let x = RootOf( z^2+z+1 ) and y = 1+x. Also the number of 4-ary Lyndon words of length n over GF(4) with trace 0 and subtrace x. Also the number of 4-ary Lyndon words of length n over GF(4) with trace 0 and subtrace y.
%H A074447 F. Ruskey, <a href="http://combos.org/TSlyndonF4">4-ary Lyndon words with given trace and subtrace over GF(4)</a>
%e A074447 a(4;0,1)=2 since the two 4-ary Lyndon words of trace 0, subtrace 1 and length 4 are { 0011, 11xx }, where x = RootOf( z^2+z+1 ).
%Y A074447 Cf. A074446, A074448, A074449, A074450.
%Y A074447 Cf. A054661, A073995, A073996, A073997, A073998, A073999.
%K A074447 nonn
%O A074447 1,4
%A A074447 _Frank Ruskey_ and Nate Kube, Aug 23 2002
%E A074447 Terms a(16) and beyond from _Andrey Zabolotskiy_, Jul 21 2021