cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074449 Number of 4-ary Lyndon words of length n over GF(4) with trace 1 and subtrace 1.

This page as a plain text file.
%I A074449 #24 Jul 22 2021 09:15:28
%S A074449 0,1,2,4,12,45,153,512,1813,6579,23901,87380,322560,1198665,4474738,
%T A074449 16777216,63160320,238612920,904213989,3435973836,13089411609,
%U A074449 49977848925,191219550297,733007751680,2814749599332,10825961287995,41699998413248,160842843834660,621186153185280
%N A074449 Number of 4-ary Lyndon words of length n over GF(4) with trace 1 and subtrace 1.
%C A074449 Let x = RootOf( z^2+z+1 ) and y = 1+x. Also the number of 4-ary Lyndon words of length n over GF(4) with trace x and subtrace y. Also the number of 4-ary Lyndon words of length n over GF(4) with trace y and subtrace x.
%H A074449 F. Ruskey, <a href="http://combos.org/TSlyndonF4">4-ary Lyndon words with given trace and subtrace over GF(4)</a>
%e A074449 Let x = RootOf( z^2+z+1 ) and y = 1+x. a(2; y,x)=1 since the one 4-ary Lyndon word of trace y, subtrace x and length 2 is { 1x }.
%Y A074449 Cf. A074446, A074447, A074448, A074450.
%Y A074449 Cf. A054660, A073995, A073996, A073997, A073998, A073999.
%K A074449 nonn
%O A074449 1,3
%A A074449 _Frank Ruskey_ and Nate Kube, Aug 23 2002
%E A074449 Terms a(16) and beyond from _Andrey Zabolotskiy_, Jul 21 2021