This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074451 #25 Jul 27 2025 08:56:31 %S A074451 16,24,32,40,48,54,56,72,80,81,88,96,104,108,112,120,128,135,136,144, %T A074451 152,160,162,168,176,184,189,192,200,208,224,232,240,243,248,250,256, %U A074451 264,270,272,280,288,296,297,304,312,320,324,328,336,344,351,352,360 %N A074451 Non-cubefree noncubes. %H A074451 Amiram Eldar, <a href="/A074451/b074451.txt">Table of n, a(n) for n = 1..10000</a> %F A074451 For n > 35, a(n) < 7n. Asymptotically, a(n) ~ kn with k = zeta(3)/(zeta(3)-1) = 5.949... . - _Charles R Greathouse IV_, Oct 16 2015 [Corrected by _Amiram Eldar_, Aug 31 2024] %F A074451 Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(3*s) - zeta(s)/zeta(3*s), for s > 1. - _Amiram Eldar_, Aug 31 2024 %t A074451 With[{m = 10}, Select[Complement[Range[m^3], Range[m]^3], AnyTrue[FactorInteger[#][[;; , 2]], #1 > 2 &] &]] (* _Amiram Eldar_, Aug 31 2024 *) %o A074451 (PARI) is(n)=my(f=factor(n)[,2]); f%3 && vecmax(f)>2 \\ _Charles R Greathouse IV_, Oct 16 2015 %o A074451 (Python) %o A074451 from sympy import integer_nthroot, mobius %o A074451 def A074451(n): %o A074451 def bisection(f,kmin=0,kmax=1): %o A074451 while f(kmax) > kmax: kmax <<= 1 %o A074451 kmin = kmax >> 1 %o A074451 while kmax-kmin > 1: %o A074451 kmid = kmax+kmin>>1 %o A074451 if f(kmid) <= kmid: %o A074451 kmax = kmid %o A074451 else: %o A074451 kmin = kmid %o A074451 return kmax %o A074451 def f(x): return n-1+(m:=integer_nthroot(x,3)[0])+sum(mobius(k)*(x//k**3) for k in range(1, m+1)) %o A074451 return bisection(f,n,n) # _Chai Wah Wu_, Jun 05 2025 %Y A074451 Intersection of A046099 and A007412. %Y A074451 Cf. A051144, A002117. %K A074451 nonn %O A074451 1,1 %A A074451 _Reinhard Zumkeller_, Sep 25 2002