A074454 Consider volume of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the resulting volume.
5, 2, 7, 7, 7, 6, 8, 0, 2, 1, 1, 1, 3, 4, 0, 0, 9, 9, 7, 2, 8, 2, 1, 4, 5, 8, 6, 4, 1, 7, 2, 8, 4, 6, 3, 8, 7, 5, 2, 9, 9, 9, 9, 2, 8, 4, 5, 1, 0, 1, 7, 3, 5, 6, 7, 7, 6, 1, 6, 3, 7, 3, 4, 0, 2, 1, 4, 8, 6, 4, 1, 2, 7, 3, 0, 5, 4, 7, 0, 1, 7, 1, 1, 0, 0, 6, 2, 0, 4, 8, 4, 0, 7, 2, 5, 8, 4, 0, 1
Offset: 1
Examples
5.277768021113400997282145864172846387529999284510173567761637340214864\ 12730547017110062048407258401284645...
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 67.
Programs
-
Mathematica
d = x /. FindRoot[ PolyGamma[1 + x/2] == Log[Pi], {x, 5}, WorkingPrecision -> 105]; First[ RealDigits[ Pi^(d/2)/(d/2)!]][[1 ;; 99]] (* Jean-François Alcover, Apr 12 2013 *)
Extensions
Checked by Martin Fuller, Jul 12 2007
Comments