This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074457 #28 Feb 16 2025 08:32:47 %S A074457 7,2,5,6,9,4,6,4,0,4,8,6,0,5,7,6,7,8,0,1,3,2,8,3,8,3,8,8,6,9,0,7,6,9, %T A074457 2,3,6,6,1,9,0,1,7,2,3,7,1,8,3,2,1,4,8,5,7,5,0,9,8,7,9,6,7,8,7,7,7,1, %U A074457 0,9,3,4,6,7,3,6,8,2,0,2,7,2,8,1,7,7,2,0,2,3,8,4,8,9,7,9,2,4,6,9,2,6 %N A074457 Consider surface area of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d. %D A074457 Nenad Cakic, Dusko Letic, and Branko Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292 %D A074457 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34. %H A074457 Dusko Letic, Nenad Cakic, Branko Davidovic, and Ivana Berkovic, <a href="http://www.advancesindifferenceequations.com/content/2012/1/22">Orthogonal and diagonal dimension fluxes of hyperspherical function</a>, Advances in Difference Equations 2012, 2012:22. - From _N. J. A. Sloane_, Sep 04 2012 %H A074457 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Hypersphere.html">Hypersphere</a>. %F A074457 Equals 2 + A074455. %e A074457 7.256946404860576780132838388690769236619017237183214857509879678777... %t A074457 RealDigits[ FindMinimum[ -n*Pi^(n/2)/(n/2)!, {n, 7}, WorkingPrecision -> 125] [[2, 1, 2]]] [[1]] %t A074457 x /. FindRoot[ PolyGamma[x/2] == Log[Pi], {x, 7}, WorkingPrecision -> 105] // RealDigits // First (* _Jean-François Alcover_, Mar 28 2013 *) %Y A074457 Surface area is A074456. Cf. A072478, A072479, A074455. %K A074457 cons,nonn %O A074457 1,1 %A A074457 _Robert G. Wilson v_, Aug 22 2002 %E A074457 Corrected by _Eric W. Weisstein_, Aug 31 2003 %E A074457 Corrected by _Martin Fuller_, Jul 12 2007