This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074465 #19 Mar 25 2020 10:42:47 %S A074465 1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A074465 1,1,1,1,39,1,1,21,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1, %U A074465 1,1,7,1,1,1,1,1,1,7,39,1,1,1,1,1,3,1,1,1,1,1,1,1,1,3,1,1,1,1,7,11,1,1,1,1 %N A074465 a(n) = gcd(n^2, sigma(n^2), phi(n^2)). %C A074465 a(n) is odd because sigma(n^2) is odd;. %H A074465 Antti Karttunen, <a href="/A074465/b074465.txt">Table of n, a(n) for n = 1..65537</a> %F A074465 a(n) = A074389(n^2). %e A074465 For n=14: gcd(196,399,84) = 7 = a(14). %t A074465 Table[Apply[GCD, {w^2, DivisorSigma[1, w^2], EulerPhi[w^2]}], {w, 1, 128}] %o A074465 (PARI) A074465(n) = gcd([n^2, sigma(n^2), eulerphi(n^2)]); \\ _Antti Karttunen_, Sep 07 2018 %Y A074465 Cf. A000203, A002618, A065764, A074389, A074466. %K A074465 nonn %O A074465 1,14 %A A074465 _Labos Elemer_, Aug 23 2002