cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074465 a(n) = gcd(n^2, sigma(n^2), phi(n^2)).

This page as a plain text file.
%I A074465 #19 Mar 25 2020 10:42:47
%S A074465 1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T A074465 1,1,1,1,39,1,1,21,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,
%U A074465 1,1,7,1,1,1,1,1,1,7,39,1,1,1,1,1,3,1,1,1,1,1,1,1,1,3,1,1,1,1,7,11,1,1,1,1
%N A074465 a(n) = gcd(n^2, sigma(n^2), phi(n^2)).
%C A074465 a(n) is odd because sigma(n^2) is odd;.
%H A074465 Antti Karttunen, <a href="/A074465/b074465.txt">Table of n, a(n) for n = 1..65537</a>
%F A074465 a(n) = A074389(n^2).
%e A074465 For n=14: gcd(196,399,84) = 7 = a(14).
%t A074465 Table[Apply[GCD, {w^2, DivisorSigma[1, w^2], EulerPhi[w^2]}], {w, 1, 128}]
%o A074465 (PARI) A074465(n) = gcd([n^2, sigma(n^2), eulerphi(n^2)]); \\ _Antti Karttunen_, Sep 07 2018
%Y A074465 Cf. A000203, A002618, A065764, A074389, A074466.
%K A074465 nonn
%O A074465 1,14
%A A074465 _Labos Elemer_, Aug 23 2002