This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074476 #28 Jul 25 2023 19:33:57 %S A074476 2,2,5,7,41,61,73,547,193,37,1181,661,6481,398581,16493,271,21523361, %T A074476 1021,530713,101917,42521761,2269,570461,23535794707,769,22996651, %U A074476 4795973261,19927,647753,5385997,47763361,22434744889,926510094425921 %N A074476 Largest prime factor of 3^n + 1. %H A074476 <a href="/A074476/b074476.txt">Table of n, a(n) for n = 0..691</a> %H A074476 S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a> %F A074476 a(n) = A006530(A034472(n)). - _Amiram Eldar_, Feb 01 2020 %t A074476 Table[FactorInteger[3^n + 1][[-1, 1]], {n, 0, 40}] (* _Vincenzo Librandi_, Aug 23 2013 *) %o A074476 (PARI) for(n=0,35, v=factor(3^n+1); print1(v[matsize(v)[1],1],",")) %o A074476 (Magma) [Maximum(PrimeDivisors(3^n+1)): n in [0..40]]; // _Vincenzo Librandi_, Aug 23 2013 %Y A074476 Cf. A006530, A034472, A074477 (largest prime factor of 3^n - 1), A002587 (largest prime factor of 2^n + 1), A074478 (largest prime factor of 5^n + 1). %K A074476 nonn %O A074476 0,1 %A A074476 _Rick L. Shepherd_, Aug 23 2002 %E A074476 Terms to a(100) in b-file from _Vincenzo Librandi_, Aug 23 2013 %E A074476 a(101)-a(658) in b-file from _Amiram Eldar_, Feb 01 2020 %E A074476 a(659)-a(691) in b-file from _Max Alekseyev_, Apr 25 2022, Jul 25 2023