cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074482 Consider the recursion b(1,n) = 1, b(k+1,n) = b(k,n) + (b(k,n) reduced mod(k+n)); then there is a number x such that b(k,n) - b(k-1,n) is a constant x depending only on n, for k > y = A074483(n). Sequence gives values of x.

This page as a plain text file.
%I A074482 #13 Jan 21 2025 22:24:38
%S A074482 97,97,97,1,3,3,6,6,8,4,1,8,8,3,2,5,17143,5,3,4,5,316,22,41,28,1,41,
%T A074482 41,3,74,39,5,316,37,37,37,12178,12178,67382,67382,73191,52,25,51,50,
%U A074482 67382,6001,25,6001,51,22,17,2,5,23,50,1,50,50,14,50,492,20,50,20,52,17,17143
%N A074482 Consider the recursion b(1,n) = 1, b(k+1,n) = b(k,n) + (b(k,n) reduced mod(k+n)); then there is a number x such that b(k,n) - b(k-1,n) is a constant x depending only on n, for k > y = A074483(n). Sequence gives values of x.
%C A074482 Conjecture: a(n) is defined for all n (as well as A074483);
%C A074482 A074484(n) = a(n)*(A074483(n)+ n + 1);
%C A074482 b(k, n) = a(n)*(k + n + 1) for k > A074483(n).
%H A074482 David W. Wilson, <a href="/A074482/b074482.txt">Table of n, a(n) for n = 0..10000</a>
%e A074482 a(0) = A073117(A074483(0)) mod A074483(0) = A073117(397) mod 397 = 38606 mod 397 = 97.
%Y A074482 Cf. A073117.
%K A074482 nonn
%O A074482 0,1
%A A074482 _Reinhard Zumkeller_ and _Benoit Cloitre_, Aug 23 2002