cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074485 Bases k for which the smallest (Fermat) pseudoprime greater than k has Moebius function mu = -1.

This page as a plain text file.
%I A074485 #11 Mar 31 2024 02:08:18
%S A074485 41,49,71,83,97,104,111,148,155,157,161,163,164,167,169,181,190,194,
%T A074485 197,205,209,223,227,229,230,231,239,243,254,265,269,272,277,284,323,
%U A074485 331,341,344,348,351,353,355,356,358,371,373,379,383,384,388,391,395
%N A074485 Bases k for which the smallest (Fermat) pseudoprime greater than k has Moebius function mu = -1.
%H A074485 Charles R Greathouse IV, <a href="/A074485/b074485.txt">Table of n, a(n) for n = 1..10000</a>
%e A074485 41: Its smallest pseudoprime is 105 = 3 * 5 * 7 and mu (105) = -1 <= (105 > 41).
%e A074485 49: Its smallest pseudoprime is 66 = 2 * 3 * 11 and mu (66) = -1 <= (66 > 49).
%e A074485 71: Its smallest pseudoprime is 105 = 3 * 5 * 7 and mu (105) = -1 <= (105 > 71).
%t A074485 q[n_] := Module[{k = n + 1}, While[! CoprimeQ[n, k] || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, k++]; MoebiusMu[k] == -1]; Select[Range[400], q] (* _Amiram Eldar_, Mar 31 2024 *)
%o A074485 (PARI) is(n)=my(k=n+1);while(isprime(k)||Mod(n,k)^(k-1)!=1,k++);moebius(k)<0 \\ _Charles R Greathouse IV_, Aug 22 2013
%Y A074485 Cf. A007535, A008683, A074228.
%K A074485 easy,nonn
%O A074485 1,1
%A A074485 _Jani Melik_, Sep 25 2002