cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074486 Encoding of topologies generated by classes of sets.

Original entry on oeis.org

1, 3, 9, 11, 15, 129, 131, 137, 139, 143, 153, 171, 175, 255
Offset: 0

Views

Author

Alford Arnold, Sep 26 2002

Keywords

Comments

We map {}, a, b, c, d, ... to 1, 2, 4, 16, 256, ..., i.e., to 2^0, 2^1, 2^2, 2^4, 2^8, ... . Sets with more than 1 element are mapped to the product. So ab (a shorthand notation for {a,b}) is mapped to 2^1 * 2^2 = 2^3. The topology is represented by the sum of the representations of its components.
The sequence encodes unlabeled topologies as described in A000798.

Examples

			1+2+8 = 11 (binary 1011) encodes {}, a, ab, which is the least encoding of this topology, so 11 is in the sequence.
1+4+8 = 13 (binary 1101) encodes {}, b, ab which is topologically equivalent and larger, so it is not in the sequence. The number of equivalent cases corresponding to a(n) begins 1; 1,1,2; 1,1,3,3,6,3,3,3,6; ... and is counted by A001928 (labeled topologies).
171 (binary 1011011) is in the sequence because we map {}, a, ab, ac, abc to 1 + 2 + 8 + 32 + 128.
		

Crossrefs

Extensions

Edited by Franklin T. Adams-Watters, Mar 29 2014