cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074495 a(n) = the first prime > sigma(n).

This page as a plain text file.
%I A074495 #11 Nov 17 2017 20:33:08
%S A074495 2,5,5,11,7,13,11,17,17,19,13,29,17,29,29,37,19,41,23,43,37,37,29,61,
%T A074495 37,43,41,59,31,73,37,67,53,59,53,97,41,61,59,97,43,97,47,89,79,73,53,
%U A074495 127,59,97,73,101,59,127,73,127,83,97,61,173,67,97,107,131,89,149,71,127,97,149,73,197,79,127,127,149,97,173,83
%N A074495 a(n) = the first prime > sigma(n).
%H A074495 Antti Karttunen, <a href="/A074495/b074495.txt">Table of n, a(n) for n = 1..16384</a>
%H A074495 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A074495 From _Antti Karttunen_, Nov 17 2017: (Start)
%F A074495 a(n) = A151800(A000203(n)).
%F A074495 a(n) >= A067792(n).
%F A074495 (End)
%e A074495 The least prime > sigma(6) = 12 is 13, so a(6) = 13.
%e A074495 The least prime > sigma(7) =  8 is 11, so a(7) = 11.
%t A074495 p[n_] := Module[{r, i}, r = 2; i = 1; While[r <= n, i = i + 1; r = Prime[i]]; r]; Table[p[DivisorSigma[1, n]], {n, 1, 40}]
%o A074495 (PARI) A074495(n) = nextprime(1+sigma(n)); \\ _Antti Karttunen_, Nov 16 2017
%Y A074495 Cf. A000203, A151800, A067792, A072918.
%K A074495 easy,nonn
%O A074495 1,1
%A A074495 _Joseph L. Pe_, Sep 26 2002
%E A074495 More terms from _Antti Karttunen_, Nov 16 2017