This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074676 #13 Mar 27 2020 06:42:03 %S A074676 4,2,18,10,2,10,8,6,4,6,6,14,4,42,2,10,6,6,6,2,10,2,10,14,10,30,2,10, %T A074676 8,12,10,8,4,8,10,2,10,8,18,4,2,4,12,8,4,12,6,12,2,18,6,16,6,2,16,6,8, %U A074676 6,6,4,2,12,10,2,4,6,6,14,10,8,10,8,10,20,4,8,10,8,40,12,2,4,2,10,14,4,2 %N A074676 Differences between consecutive three-digit distinct-digit primes. %C A074676 There are exactly 97 three-digit primes with all distinct digits, so the sequence is finite. %H A074676 Jinyuan Wang, <a href="/A074676/b074676.txt">Table of n, a(n) for n = 1..96</a> %e A074676 a(1)=4 because the first and the second three-digit primes with all distinct digits are 103, 107 and difference between them is 4. %t A074676 se=Select[Range[103, 983, 2], Length[Union[IntegerDigits[ # ]]]==3&&PrimeQ[ # ]&]; Flatten[Table[{se[[i+1]]-se[[i]]}, {i, 96}]] %Y A074676 The first differences of the A074675. For 4-digit distinct-digit primes, see A074673, A074674. For 5-digit distinct-digit primes, see A074671, A074672. For 6-digit distinct-digit primes, see A074669, A074670. For 7-digit distinct-digit primes, see A074667, A074668. For 8-digit distinct-digit primes, see A074665, A074666. %K A074676 nonn,base,fini,full %O A074676 1,1 %A A074676 _Zak Seidov_, Aug 30 2002