This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074707 #10 May 10 2013 12:45:05 %S A074707 1,1,3,19,214,3846,102206,3795758,188648664,12125977944,980768153832, %T A074707 97599402813672,11728820086206576,1675575398007779568, %U A074707 280777781273956353648,54556438705747006028016,12169284368165386948212096,3088938134820388829982311808 %N A074707 exp(Sum_{n>0} x^n/n^2) = Sum_{n>=0} a(n)*x^n/n!^2. %D A074707 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, pp. 464-466. %F A074707 a(n)=n!^2/n*sum(k=0, n-1, a(k)/k!^2/(n-k)). a(n)/n!^2 = exp(Pi^2/6)/n^2 + O(log(n)/n^3). - _Benoit Cloitre_, Jan 11 2003 %o A074707 (PARI) a(n)=if(n<2,1,(n-1)!^2+n!^2/n*sum(k=1,n-1,a(k)/k!^2/(n-k))) %o A074707 (PARI) {a(n)=n!^2*polcoeff(exp(sum(m=1, n, x^m/m^2)+x*O(x^n)), n)} %Y A074707 Cf. A193436, A217145. %K A074707 nonn %O A074707 0,3 %A A074707 _Vladeta Jovovic_, Sep 04 2002