This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074708 #13 Jul 17 2021 03:41:02 %S A074708 1,3,25,406,10856,432536,24032380,1776015088,168482342208, %T A074708 19958023887552,2887514448643584,501074299946343168, %U A074708 102727197888801668352,24564844379606631001344,6776711942017520895558912,2136315270266212479331055616,763191034622566084583650197504 %N A074708 -log(1-Sum_{n>0} x^n/n^2) = Sum_{n>=0} a(n)*x^n/n!^2. %H A074708 Andrew Howroyd, <a href="/A074708/b074708.txt">Table of n, a(n) for n = 1..200</a> %F A074708 a(n) = ((n-1)!)^2 + (1/n) * Sum_{k=1..n-1} (binomial(n,k) * (k-1)!)^2 * (n-k) * a(n-k). - _Ilya Gutkovskiy_, Jul 16 2021 %F A074708 a(n) ~ d^n * n! * (n-1)!, where d = 1.31312358308891164912353600222812555333413518214112353115268393... - _Vaclav Kotesovec_, Jul 17 2021 %t A074708 nmax = 20; Rest[CoefficientList[Series[-Log[1 - Sum[x^k/k^2, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!^2] (* _Vaclav Kotesovec_, Jul 17 2021 *) %o A074708 (PARI) seq(n)={Vec(serlaplace(serlaplace(-log(O(x*x^n) + 1 - sum(k=1, n, x^k/k^2)))))} \\ _Andrew Howroyd_, Jan 27 2020 %Y A074708 Cf. A003713. %K A074708 nonn %O A074708 1,2 %A A074708 _Vladeta Jovovic_, Sep 04 2002 %E A074708 Terms a(15) and beyond from _Andrew Howroyd_, Jan 27 2020