This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074712 #41 Apr 05 2025 10:01:25 %S A074712 1,2,2,3,2,3,4,4,4,4,5,4,3,4,5,6,6,6,6,6,6,7,6,7,4,7,6,7,8,8,6,8,8,6, %T A074712 8,8,9,8,9,8,5,8,9,8,9,10,10,10,10,10,10,10,10,10,10,11,10,9,8,11,6, %U A074712 11,8,9,10,11,12,12,12,12,12,12,12,12,12,12,12,12 %N A074712 Number of (interiors of) cells touched by a diagonal in a regular n X k grid (enumerated antidiagonally). %C A074712 From _Yifan Xie_, Nov 17 2024: (Start) %C A074712 A(n, k) is the minimum sum of side lengths of squares that exactly cover a n X k rectangle. %C A074712 A(n, k) is the minimum number of nonzero elements of a n X k matrix such that the sum of each row is n, and the sum of each column is k. %C A074712 (End) %H A074712 Nathaniel Johnston, <a href="/A074712/b074712.txt">First 150 antidiagonals, flattened</a> %H A074712 Micky Bullock, <a href="http://www.mickybullock.com/blog/2010/06/the-diagonal-problem/">The Diagonal Problem (2 dimensions)</a>. %H A074712 Alberto L. Delgado's <a href="https://web.archive.org/web/20080808134752/http://hilltop.bradley.edu/~delgado/potw/p145.html">Problem of the Week No. 145</a>. %F A074712 A(n, k) = n + k - 1 if n and k are coprime; A(n, k) = d * A(n/d, k/d) where d is the greatest common divisor of n and k, otherwise. %F A074712 A(n, k) = n + k - gcd(n, k). - _Luc Rousseau_, Sep 15 2017 %F A074712 T(n,k) = A(k,n-k+1) = n+1 - A050873(n+1,k). - _Seiichi Manyama_, Apr 05 2025 %e A074712 The square array A(n,k) (n >= 1, k >= 1) begins: %e A074712 1 2 3 4 5 6 7 8 %e A074712 2 2 4 4 6 6 8 8 %e A074712 3 4 3 6 7 6 9 10 %e A074712 4 4 6 4 8 8 10 8 %e A074712 5 6 7 8 5 10 11 12 %e A074712 6 6 6 8 10 6 12 12 %e A074712 7 8 9 10 11 12 7 14 %e A074712 8 8 10 8 12 12 14 8 %e A074712 ... %e A074712 From _Seiichi Manyama_, Apr 05 2025: (Start) %e A074712 The triangle T(n,k) (1 <= k <= n) begins: %e A074712 1; %e A074712 2, 2; %e A074712 3, 2, 3; %e A074712 4, 4, 4, 4; %e A074712 5, 4, 3, 4, 5; %e A074712 6, 6, 6, 6, 6, 6; %e A074712 7, 6, 7, 4, 7, 6, 7; %e A074712 8, 8, 6, 8, 8, 6, 8, 8; %e A074712 9, 8, 9, 8, 5, 8, 9, 8, 9; %e A074712 10, 10, 10, 10, 10, 10, 10, 10, 10, 10; %e A074712 ... (End) %p A074712 A074712 := proc(m,n) local d: d:=gcd(m,n): if(d=1)then return m+n-1: else return d*procname(m/d,n/d): fi: end: seq(seq(A074712(n-d+1,d),d=1..n),n=1..8); # _Nathaniel Johnston_, May 09 2011 %t A074712 A[m_,n_]=m+n-GCD[m,n];Table[A[m,s-m],{s,2,10},{m,1,s-1}]//Flatten (* _Luc Rousseau_, Sep 16 2017 *) %o A074712 (PARI) (A(n,k)=n+k-gcd(n,k));for(s=2,10,for(n=1,s-1,k=s-n;print1(A(n,k),", "))) \\ _Luc Rousseau_, Sep 16 2017 %Y A074712 Cf. A050873, A199408. %K A074712 easy,nonn,tabl,look %O A074712 1,2 %A A074712 _Jens Voß_, Sep 04 2002