cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074736 Goedel encoding of the prime factors of n, in increasing order and repeated according to multiplicity.

This page as a plain text file.
%I A074736 #25 Nov 04 2024 22:07:18
%S A074736 1,4,8,36,32,108,128,900,216,972,2048,4500,8192,8748,1944,44100,
%T A074736 131072,13500,524288,112500,17496,708588,8388608,308700,7776,6377292,
%U A074736 27000,2812500,536870912,337500,2147483648,5336100,1417176,516560652,69984,1543500,137438953472
%N A074736 Goedel encoding of the prime factors of n, in increasing order and repeated according to multiplicity.
%C A074736 For irregular triangle T(n,k) at A027746, a(n) = Product_{1..A001222(n)} pi(k)^T(n,k). - _Michael De Vlieger_, May 04 2020.
%D A074736 K. Gödel, "On Formally Undecidable Propositions of Principia Mathematica and Related Systems", Dover Publications, 1992.
%H A074736 Michael De Vlieger, <a href="/A074736/b074736.txt">Table of n, a(n) for n = 1..3322</a>
%H A074736 Wikipedia, <a href="https://en.wikipedia.org/wiki/G%C3%B6del_numbering#G%C3%B6del&#39;s_encoding">Gödel's encoding</a>
%F A074736 a(n) = prime(1)^p_1 * prime(2)^p_2 * ... * prime(k)^p_k, where p_1 <= ... <= p_k are the prime factors of n, repeated according to multiplicity.
%e A074736 The prime factors of 12 in increasing order and repeated according to multiplicity are 2, 2, 3. Hence a(12) = 2^2 * 3^2 * 5^3 = 4500.
%p A074736 a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
%p A074736         sort(map(i-> i[1]$i[2], ifactors(n)[2]))):
%p A074736 seq(a(n), n=1..40);
%t A074736 Array[Times @@ MapIndexed[Prime[First[#2]]^#1 &, Apply[Join, ConstantArray[#1, #2] & @@@ FactorInteger[#]]] &, 34, 2] (* _Michael De Vlieger_, May 04 2020 *)
%o A074736 (PARI) for(n=2,50,m=factor(n):s=1:c=1:for(k=1,matsize(m)[1], for(l=1,m[k,2],s=s*prime(c)^m[k,1]:c=c+1)):print1(s",")) [Does not compile. - _Robert C. Lyons_, Nov 04 2024]
%o A074736 (Python)
%o A074736 from math import prod
%o A074736 from sympy import prime, factorint
%o A074736 def A074736(n): return prod(prime(i)**j for i, j in enumerate(factorint(n,multiple=True),1)) # _Chai Wah Wu_, Nov 04 2024
%Y A074736 Cf. A001222, A027746.
%K A074736 nonn
%O A074736 1,2
%A A074736 _Joseph L. Pe_, Sep 28 2002
%E A074736 More terms from _Ralf Stephan_, Mar 22 2003
%E A074736 a(1)=1 prepended by _Alois P. Heinz_, Nov 04 2024