This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074761 #38 Jun 22 2025 16:27:42 %S A074761 1,1,1,1,1,2,1,1,1,3,1,9,1,4,5,1,1,12,1,27,7,6,1,81,1,7,1,54,1,407,1, %T A074761 1,11,9,13,494,1,10,13,423,1,981,1,137,115,12,1,1309,1,59,17,193,1, %U A074761 240,21,1207,19,15,1,47274,1,16,239,1,25,3284,1,333,23,3731,1,42109,1,19 %N A074761 Number of partitions of n of order n. %C A074761 Order of partition is lcm of its parts. %C A074761 a(n) is the number of conjugacy classes of the symmetric group S_n such that a representative of the class has order n. Here order means the order of an element of a group. Note that a(n) = 1 if and only if n is a prime power. - _W. Edwin Clark_, Aug 05 2014 %H A074761 Joerg Arndt and Alois P. Heinz, <a href="/A074761/b074761.txt">Table of n, a(n) for n = 1..4000</a> (first 1025 terms from Joerg Arndt) %F A074761 Coefficient of x^n in expansion of Sum_{i divides n} A008683(n/i)*1/Product_{j divides i} (1-x^j). %e A074761 The a(15) = 5 partitions are (15), (5,3,3,3,1), (5,5,3,1,1), (5,3,3,1,1,1,1), (5,3,1,1,1,1,1,1,1). - _Gus Wiseman_, Aug 01 2018 %p A074761 A:= proc(n) %p A074761 uses numtheory; %p A074761 local S; %p A074761 S:= add(mobius(n/i)*1/mul(1-x^j,j=divisors(i)),i=divisors(n)); %p A074761 coeff(series(S,x,n+1),x,n); %p A074761 end proc: %p A074761 seq(A(n),n=1..100); # _Robert Israel_, Aug 06 2014 %t A074761 a[n_] := With[{s = Sum[MoebiusMu[n/i]*1/Product[1-x^j, {j, Divisors[i]}], {i, Divisors[n]}]}, SeriesCoefficient[s, {x, 0, n}]]; Array[a, 80] (* _Jean-François Alcover_, Feb 29 2016 *) %t A074761 Table[Length[Select[IntegerPartitions[n],LCM@@#==n&]],{n,50}] (* _Gus Wiseman_, Aug 01 2018 *) %o A074761 (PARI) %o A074761 pr(k, x)={my(t=1); fordiv(k, d, t *= (1-x^d) ); return(t); } %o A074761 a(n) = %o A074761 { %o A074761 my( x = 'x+O('x^(n+1)) ); %o A074761 polcoeff( Pol( sumdiv(n, i, moebius(n/i) / pr(i, x) ) ), n ); %o A074761 } %o A074761 vector(66, n, a(n) ) %o A074761 \\ _Joerg Arndt_, Aug 06 2014 %Y A074761 Cf. A018818, A074351, A074752. %Y A074761 Main diagonal of A256067, A256554. %Y A074761 Cf. A000837, A074761, A285572, A290103, A305566, A316429, A316431, A316432, A316433, A317624. %K A074761 easy,nonn %O A074761 1,6 %A A074761 _Vladeta Jovovic_, Sep 28 2002