A074781 Primes of the form p*2^k + 1 for any k and any prime p.
3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 83, 89, 97, 107, 113, 137, 149, 167, 173, 179, 193, 227, 233, 257, 263, 269, 293, 317, 347, 353, 359, 383, 389, 449, 467, 479, 503, 509, 557, 563, 569, 587, 593, 641, 653, 719, 769, 773, 797, 809, 839, 857, 863, 887
Offset: 1
Keywords
Examples
3 = 2*2^0+1 is a term and 2/2 = 1 = 2^0. 7 = 3*2^1+1 is a term and 6/3 = 2 = 2^1. 13 = 3*2^2+1 is a term and 12/3 = 4 = 2^2. 41 = 5*2^3+1 is a term and 40/5 = 8 = 2^3. 113 = 7*2^4+1 is a term and 112/7 = 16 = 2^4.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.
Links
- T. D. Noe, Table of n, a(n) for n = 1..2000
- Graeme L. Cohen, On a conjecture of Makowski and Schinzel, Colloquium Mathematicae, Vol. 74, No. 1 (1997), pp. 1-8.
Crossrefs
Programs
-
Maple
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)): is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2}: 3, op(select(is_a, [$3..919])); # Peter Luschny, Dec 14 2020
-
Mathematica
Select[Range[3, 1000], PrimeQ[#] && !CompositeQ[(# - 1)/2^IntegerExponent[(# - 1), 2]] &] (* Amiram Eldar, Dec 28 2018 *)
Comments