cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074781 Primes of the form p*2^k + 1 for any k and any prime p.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 83, 89, 97, 107, 113, 137, 149, 167, 173, 179, 193, 227, 233, 257, 263, 269, 293, 317, 347, 353, 359, 383, 389, 449, 467, 479, 503, 509, 557, 563, 569, 587, 593, 641, 653, 719, 769, 773, 797, 809, 839, 857, 863, 887
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

Keywords

Comments

From Bernard Schott, Dec 14 2020: (Start)
Equivalently, primes p such that the ratio (p-1)/gpf(p-1) = 2^k where gpf(m) is the greatest prime factor of m, A006530.
Paul Erdős asked if there are infinitely many primes p in this sequence (see R. K. Guy reference). (End)

Examples

			3 = 2*2^0+1 is a term and 2/2 = 1 = 2^0.
7 = 3*2^1+1 is a term and 6/3 = 2 = 2^1.
13 = 3*2^2+1 is a term and 12/3 = 4 = 2^2.
41 = 5*2^3+1 is a term and 40/5 = 8 = 2^3.
113 = 7*2^4+1 is a term and 112/7 = 16 = 2^4.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.

Crossrefs

Cf. other ratios : A339463, A339465, A339466.
Subsequences: A039687, A051900, A058500 (this sequence without the Fermat primes), A090866, A147545,

Programs

  • Maple
    alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
    is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2}:
    3, op(select(is_a, [$3..919])); # Peter Luschny, Dec 14 2020
  • Mathematica
    Select[Range[3, 1000], PrimeQ[#] && !CompositeQ[(# - 1)/2^IntegerExponent[(# - 1), 2]] &] (* Amiram Eldar, Dec 28 2018 *)