This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074826 #10 Dec 08 2021 09:51:01 %S A074826 5,6,6,6,6,-4,-60,-246,-722,-1758,-3754,-7144,-11868,-15646,-9458, %T A074826 32726,174750,555668,1446564,3310642,6788406,12366066,19107358, %U A074826 21047904,-1585148,-101419654,-400928730,-1155269658,-2838111242,-6203242964,-12144929980,-20857830310,-29087301442 %N A074826 Binomial transform of reflected pentanacci numbers A074062: a(n) = Sum_{k=0..n}(-1)^k*binomial(n, k)*A074062(k). %H A074826 G. C. Greubel, <a href="/A074826/b074826.txt">Table of n, a(n) for n = 0..1000</a> %H A074826 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A074826 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,4). %F A074826 a(n) = Sum_{j=0..n} (-1)^j*binomial(n, j)*A074062(j) %F A074826 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 4*a(n-5), a(0) = 5, a(1) = 6, a(2) = 6, a(3) = 6, a(4) = 6. %F A074826 G.f.: (5 -24*x +45*x^2 -40*x^3 +15*x^4)/(1 -6*x +15*x^2 -20*x^3 +15*x^4 -4*x^5). %t A074826 CoefficientList[Series[(5-24x+45x^2-40x^3+15x^4)/(1-6x+15x^2-20x^3+15x^4-4x^5), {x, 0, 35}], x] %o A074826 (Magma) %o A074826 R<x>:=PowerSeriesRing(Integers(), 40); %o A074826 Coefficients(R!( (5-24*x+45*x^2-40*x^3+15*x^4)/(1-6*x+15*x^2-20*x^3+15*x^4 -4*x^5) )); // _G. C. Greubel_, Jul 08 2021 %o A074826 (Sage) %o A074826 def A168823_list(prec): %o A074826 P.<x> = PowerSeriesRing(ZZ, prec) %o A074826 return P( (5-24*x+45*x^2-40*x^3+15*x^4)/(1-6*x+15*x^2-20*x^3+15*x^4-4*x^5) ).list() %o A074826 A168823_list(40) # _G. C. Greubel_, Jul 08 2021 %Y A074826 Cf. A074062, A074825. %K A074826 easy,sign %O A074826 0,1 %A A074826 Mario Catalani (mario.catalani(AT)unito.it), Sep 10 2002