This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074827 #31 Jan 17 2017 14:24:51 %S A074827 4,6,8,10,12,16,18,20,22,24,28,30,32,36,40,42,45,46,48,50,52,54,56,58, %T A074827 60,64,66,68,70,72,76,78,80,81,82,84,88,90,92,96,100,102,105,106,108, %U A074827 110,112,114,117,120,124,126,128,130,132,136,138,140,144,148,150,152 %N A074827 Numbers n such that tau(n) > tau(n+1) where tau(x) = A000005(x). %C A074827 The sequence of n such that tau(n)<tau(n+1) seems also asymptotic to d*n. - _Benoit Cloitre_, Sep 07 2002 %H A074827 Charles R Greathouse IV, <a href="/A074827/b074827.txt">Table of n, a(n) for n = 1..10000</a> %H A074827 P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1936-03.pdf">On a problem of Chowla and some related problems</a>, Proc. Cambridge Philos. Soc. 32 (1936), pp. 530-540. %F A074827 a(n) seems to be asymptotic to d*n with d=2.2... - _Benoit Cloitre_, Sep 07 2002 %F A074827 In fact, Erdős proved that a(n) ~ 2n. - _Charles R Greathouse IV_, Dec 05 2012 %t A074827 Select[Range@ 152, DivisorSigma[0, #] > DivisorSigma[0, # + 1] &] (* _Michael De Vlieger_, Jul 03 2015 *) %t A074827 Position[Partition[DivisorSigma[0,Range[200]],2,1],_?(#[[1]]>#[[2]]&),{1},Heads->False]//Flatten (* _Harvey P. Dale_, Jan 17 2017 *) %o A074827 (PARI) is(n)=numdiv(n) > numdiv(n+1) \\ _Charles R Greathouse IV_, Dec 05 2012 %Y A074827 Cf. A074775 (tau(n)<tau(n+1)). %K A074827 nonn %O A074827 1,1 %A A074827 _Donald S. McDonald_, Sep 04 2002 %E A074827 Corrected and extended by _Robert G. Wilson v_, Sep 06 2002