This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074829 #30 Mar 31 2025 06:43:57 %S A074829 1,1,1,2,2,2,3,4,4,3,5,7,8,7,5,8,12,15,15,12,8,13,20,27,30,27,20,13, %T A074829 21,33,47,57,57,47,33,21,34,54,80,104,114,104,80,54,34,55,88,134,184, %U A074829 218,218,184,134,88,55,89,143,222,318,402,436,402,318,222,143,89 %N A074829 Triangle formed by Pascal's rule, except that the n-th row begins and ends with the n-th Fibonacci number. %H A074829 Reinhard Zumkeller, <a href="/A074829/b074829.txt">Rows n = 1..120 of table, flattened</a> %H A074829 Hebert Pérez-Rosés, <a href="https://arxiv.org/abs/2503.17462">Asymptotic Analysis of Central Binomiacci Numbers</a>, arXiv:2503.17462 [math.CO], 2025. %H A074829 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %e A074829 The first and second Fibonacci numbers are 1, 1, so the first and second rows of the triangle are 1; 1 1; respectively. The third row of the triangle begins and ends with the third Fibonacci number, 2 and the middle term is the sum of the contiguous two terms in the second row, i.e., 1 + 1 = 2, so the third row is 2 2 2. %e A074829 Triangle begins: %e A074829 1; %e A074829 1, 1; %e A074829 2, 2, 2; %e A074829 3, 4, 4, 3; %e A074829 5, 7, 8, 7, 5; %e A074829 8, 12, 15, 15, 12, 8; %e A074829 13, 20, 27, 30, 27, 20, 13; %e A074829 21, 33, 47, 57, 57, 47, 33, 21; %e A074829 34, 54, 80, 104, 114, 104, 80, 54, 34; %e A074829 ... %e A074829 Formatted as a symmetric triangle: %e A074829 1; %e A074829 1, 1; %e A074829 2, 2, 2; %e A074829 3, 4, 4, 3; %e A074829 5, 7, 8, 7, 5; %e A074829 8, 12, 15, 15, 12, 8; %e A074829 13, 20, 27, 30, 27, 20, 13; %e A074829 21, 33, 47, 57, 57, 47, 33, 21; %e A074829 34, 54, 80, 104, 114, 104, 80, 54, 34; %p A074829 A074829 := proc(n,k) %p A074829 option remember ; %p A074829 if k=1 or k=n then %p A074829 combinat[fibonacci](n) ; %p A074829 else %p A074829 procname(n-1,k-1)+procname(n-1,k) ; %p A074829 end if; %p A074829 end proc: %p A074829 seq(seq(A074829(n,k),k=1..n),n=1..12) ; # _R. J. Mathar_, Mar 31 2025 %t A074829 T[n_, 1]:= Fibonacci[n]; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n-1, k-1] + T[n-1, k]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten (* _G. C. Greubel_, Jul 12 2019 *) %o A074829 (Haskell) %o A074829 a074829 n k = a074829_tabl !! (n-1) !! (k-1) %o A074829 a074829_row n = a074829_tabl !! (n-1) %o A074829 a074829_tabl = map fst $ iterate %o A074829 (\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [u]))) ([1], [1,1]) %o A074829 -- _Reinhard Zumkeller_, Aug 15 2013 %o A074829 (PARI) T(n,k) = if(k==1 || k==n, fibonacci(n), T(n-1,k-1) + T(n-1,k)); %o A074829 for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Jul 12 2019 %o A074829 (Sage) %o A074829 def T(n, k): %o A074829 if (k==1 or k==n): return fibonacci(n) %o A074829 else: return T(n-1, k-1) + T(n-1, k) %o A074829 [[T(n, k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Jul 12 2019 %o A074829 (GAP) %o A074829 T:= function(n,k) %o A074829 if k=1 then return Fibonacci(n); %o A074829 elif k=n then return Fibonacci(n); %o A074829 else return T(n-1,k-1) + T(n-1,k); %o A074829 fi; %o A074829 end; %o A074829 Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # _G. C. Greubel_, Jul 12 2019 %Y A074829 Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A105809, A108617, A109906, A111006, A114197, A162741, A228074. %Y A074829 Cf. A074878 (row sums). %K A074829 easy,nonn,tabl %O A074829 1,4 %A A074829 _Joseph L. Pe_, Sep 30 2002 %E A074829 More terms from _Philippe Deléham_, Sep 20 2006 %E A074829 Data error in 7th row fixed by _Reinhard Zumkeller_, Aug 15 2013