This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074851 #41 Jul 29 2023 14:06:39 %S A074851 14,20,21,33,34,35,38,39,44,45,50,51,54,55,56,57,62,68,74,75,76,85,86, %T A074851 87,91,92,93,94,95,98,99,111,115,116,117,118,122,123,133,134,135,141, %U A074851 142,143,144,145,146,147,152,158,159,160,161,171,175,176,177,183,184 %N A074851 Numbers k such that k and k+1 both have exactly 2 distinct prime factors. %C A074851 Subsequence of A006049. - _Michel Marcus_, May 06 2016 %H A074851 Seiichi Manyama, <a href="/A074851/b074851.txt">Table of n, a(n) for n = 1..10000</a> %F A074851 a(n) seems to be asymptotic to c*n*log(n)^2 with c=0.13... %F A074851 {k: A001221(k) = A001221(k+1) = 2}. - _R. J. Mathar_, Jul 18 2023 %e A074851 20=2^2*5 21=3*7 hence 20 is in the sequence. %t A074851 Flatten[Position[Partition[Table[If[PrimeNu[n]==2,1,0],{n,200}],2,1],{1,1}]] (* _Harvey P. Dale_, Mar 12 2015 *) %o A074851 (PARI) isok(n) = (omega(n) == 2) && (omega(n+1) == 2); \\ _Michel Marcus_, May 06 2016 %o A074851 (Magma) [n: n in [2..200] | #PrimeDivisors(n) eq 2 and #PrimeDivisors(n+1) eq 2]; // _Vincenzo Librandi_, Dec 05 2018 %o A074851 (GAP) Filtered([1..200],n->[Size(Set(Factors(n))),Size(Set(Factors(n+1)))]=[2,2]); # _Muniru A Asiru_, Dec 05 2018 %o A074851 (Python) %o A074851 import sympy %o A074851 from sympy.ntheory.factor_ import primenu %o A074851 for n in range(1,200): %o A074851 if primenu(n)==2 and primenu(n+1)==2: %o A074851 print(n, end=', '); # _Stefano Spezia_, Dec 05 2018 %Y A074851 Cf. A006049, A006549, A001221. %Y A074851 Analogous sequences for m distinct prime factors: this sequence (m=2), A140077 (m=3), A140078 (m=4), A140079 (m=5), A273879 (m=6). %Y A074851 Cf. A093548. %Y A074851 Equals A255346 \ A321502. %K A074851 easy,nonn %O A074851 1,1 %A A074851 _Benoit Cloitre_, Sep 10 2002