This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074854 #37 Jul 17 2020 00:34:15 %S A074854 1,3,5,13,17,57,65,209,321,801,1025,3905,4097,12417,21505,53505,65537, %T A074854 233985,262145,885761,1327105,3147777,4194305,16060417,17825793, %U A074854 50339841,84148225,220217345,268435457,990937089,1073741825,3506503681 %N A074854 a(n) = Sum_{d|n} (2^(n-d)). %C A074854 A034729 = Sum_{d|n} (2^(d-1)). %C A074854 A055895 = 2*A034729. %C A074854 If p is a prime, then a(p) = A034729(p) = 2^(p-1)+1. %C A074854 From _Gus Wiseman_, Jul 14 2020: (Start) %C A074854 Number of ways to tile a rectangle of size n using horizontal strips. Also the number of ways to choose a composition of each part of a constant partition of n. The a(0) = 1 through a(5) = 17 splittings are: %C A074854 () (1) (2) (3) (4) (5) %C A074854 (1,1) (1,2) (1,3) (1,4) %C A074854 (1),(1) (2,1) (2,2) (2,3) %C A074854 (1,1,1) (3,1) (3,2) %C A074854 (1),(1),(1) (1,1,2) (4,1) %C A074854 (1,2,1) (1,1,3) %C A074854 (2,1,1) (1,2,2) %C A074854 (2),(2) (1,3,1) %C A074854 (1,1,1,1) (2,1,2) %C A074854 (1,1),(2) (2,2,1) %C A074854 (2),(1,1) (3,1,1) %C A074854 (1,1),(1,1) (1,1,1,2) %C A074854 (1),(1),(1),(1) (1,1,2,1) %C A074854 (1,2,1,1) %C A074854 (2,1,1,1) %C A074854 (1,1,1,1,1) %C A074854 (1),(1),(1),(1),(1) %C A074854 (End) %H A074854 Gus Wiseman, <a href="/A074854/b074854.txt">Table of n, a(n) for n = 1..32</a> %F A074854 G.f.: 2^n times coefficient of x^n in Sum_{k>=1} x^k/(2-x^k). - _Benoit Cloitre_, Apr 21 2003; corrected by _Joerg Arndt_, Mar 28 2013 %F A074854 G.f.: Sum_{k>0} 2^(k-1)*x^k/(1-2^(k-1)*x^k). - _Vladeta Jovovic_, Jun 24 2003 %F A074854 G.f.: Sum_{n>=1} a*z^n/(1-a*z^n) (generalized Lambert series) where z=2*x and a=1/2. - _Joerg Arndt_, Jan 30 2011 %F A074854 Triangle A051731 mod 2 converted to decimal. - _Philippe Deléham_, Oct 04 2003 %F A074854 G.f.: Sum_{k>0} 1 / (2 / (2*x)^k - 1). - _Michael Somos_, Mar 28 2013 %e A074854 Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57. %e A074854 G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ... %e A074854 a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - _Gus Wiseman_, Jun 20 2018 %t A074854 a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* _Michael Somos_, Mar 28 2013 *) %o A074854 (PARI) a(n)=if(n<1,0,2^n*polcoeff(sum(k=1,n,2/(2-x^k),x*O(x^n)),n)) %o A074854 (PARI) a(n) = sumdiv(n,d, 2^(n-d) ); /* _Joerg Arndt_, Mar 28 2013 */ %Y A074854 Cf. A055895, A034729. %Y A074854 Cf. A080267. %Y A074854 Cf. A051731. %Y A074854 The version looking at lengths instead of sums is A101509. %Y A074854 The strictly increasing (or strictly decreasing) version is A304961. %Y A074854 Starting with a partition gives A317715. %Y A074854 Starting with a strict partition gives A318683. %Y A074854 Requiring distinct instead of equal sums gives A336127. %Y A074854 Starting with a strict composition gives A336130. %Y A074854 Partitions of partitions are A001970. %Y A074854 Splittings of compositions are A133494. %Y A074854 Splittings of partitions are A323583. %Y A074854 Cf. A006951, A063834, A075900, A279787, A305551, A316245, A323433, A336128. %K A074854 easy,nonn %O A074854 1,2 %A A074854 _Miklos Kristof_, Sep 11 2002 %E A074854 a(14) corrected from 9407 to 12417 by _Gus Wiseman_, Jun 20 2018