cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074854 a(n) = Sum_{d|n} (2^(n-d)).

This page as a plain text file.
%I A074854 #37 Jul 17 2020 00:34:15
%S A074854 1,3,5,13,17,57,65,209,321,801,1025,3905,4097,12417,21505,53505,65537,
%T A074854 233985,262145,885761,1327105,3147777,4194305,16060417,17825793,
%U A074854 50339841,84148225,220217345,268435457,990937089,1073741825,3506503681
%N A074854 a(n) = Sum_{d|n} (2^(n-d)).
%C A074854 A034729 = Sum_{d|n} (2^(d-1)).
%C A074854 A055895 = 2*A034729.
%C A074854 If p is a prime, then a(p) = A034729(p) = 2^(p-1)+1.
%C A074854 From _Gus Wiseman_, Jul 14 2020: (Start)
%C A074854 Number of ways to tile a rectangle of size n using horizontal strips. Also the number of ways to choose a composition of each part of a constant partition of n. The a(0) = 1 through a(5) = 17 splittings are:
%C A074854   ()  (1)  (2)      (3)          (4)              (5)
%C A074854            (1,1)    (1,2)        (1,3)            (1,4)
%C A074854            (1),(1)  (2,1)        (2,2)            (2,3)
%C A074854                     (1,1,1)      (3,1)            (3,2)
%C A074854                     (1),(1),(1)  (1,1,2)          (4,1)
%C A074854                                  (1,2,1)          (1,1,3)
%C A074854                                  (2,1,1)          (1,2,2)
%C A074854                                  (2),(2)          (1,3,1)
%C A074854                                  (1,1,1,1)        (2,1,2)
%C A074854                                  (1,1),(2)        (2,2,1)
%C A074854                                  (2),(1,1)        (3,1,1)
%C A074854                                  (1,1),(1,1)      (1,1,1,2)
%C A074854                                  (1),(1),(1),(1)  (1,1,2,1)
%C A074854                                                   (1,2,1,1)
%C A074854                                                   (2,1,1,1)
%C A074854                                                   (1,1,1,1,1)
%C A074854                                                   (1),(1),(1),(1),(1)
%C A074854 (End)
%H A074854 Gus Wiseman, <a href="/A074854/b074854.txt">Table of n, a(n) for n = 1..32</a>
%F A074854 G.f.: 2^n times coefficient of x^n in Sum_{k>=1} x^k/(2-x^k). - _Benoit Cloitre_, Apr 21 2003; corrected by _Joerg Arndt_, Mar 28 2013
%F A074854 G.f.: Sum_{k>0} 2^(k-1)*x^k/(1-2^(k-1)*x^k). - _Vladeta Jovovic_, Jun 24 2003
%F A074854 G.f.: Sum_{n>=1} a*z^n/(1-a*z^n) (generalized Lambert series) where z=2*x and a=1/2. - _Joerg Arndt_, Jan 30 2011
%F A074854 Triangle A051731 mod 2 converted to decimal. - _Philippe Deléham_, Oct 04 2003
%F A074854 G.f.: Sum_{k>0} 1 / (2 / (2*x)^k - 1). - _Michael Somos_, Mar 28 2013
%e A074854 Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57.
%e A074854 G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ...
%e A074854 a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - _Gus Wiseman_, Jun 20 2018
%t A074854 a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* _Michael Somos_, Mar 28 2013 *)
%o A074854 (PARI) a(n)=if(n<1,0,2^n*polcoeff(sum(k=1,n,2/(2-x^k),x*O(x^n)),n))
%o A074854 (PARI) a(n) = sumdiv(n,d, 2^(n-d) ); /* _Joerg Arndt_, Mar 28 2013 */
%Y A074854 Cf. A055895, A034729.
%Y A074854 Cf. A080267.
%Y A074854 Cf. A051731.
%Y A074854 The version looking at lengths instead of sums is A101509.
%Y A074854 The strictly increasing (or strictly decreasing) version is A304961.
%Y A074854 Starting with a partition gives A317715.
%Y A074854 Starting with a strict partition gives A318683.
%Y A074854 Requiring distinct instead of equal sums gives A336127.
%Y A074854 Starting with a strict composition gives A336130.
%Y A074854 Partitions of partitions are A001970.
%Y A074854 Splittings of compositions are A133494.
%Y A074854 Splittings of partitions are A323583.
%Y A074854 Cf. A006951, A063834, A075900, A279787, A305551, A316245, A323433, A336128.
%K A074854 easy,nonn
%O A074854 1,2
%A A074854 _Miklos Kristof_, Sep 11 2002
%E A074854 a(14) corrected from 9407 to 12417 by _Gus Wiseman_, Jun 20 2018