A074890 Decimal form of binary integers produced by a modified version of Wolfram's Rule 30 one-dimensional cellular automaton.
1, 3, 6, 13, 25, 55, 100, 222, 401, 891, 1602, 3559, 6428, 14258, 25647, 56936, 102860, 228154, 410339, 910998, 1645813, 3650437, 6565453, 14576121, 26332935, 58407052, 105047514, 233217299, 421327294, 934513441, 1680759539
Offset: 0
Examples
a(4)=13 because a(3)=6=0110(binary) and applying Rule 30 to each digit [(b(n)==0 && b(n+1)==0) ? b(n-1) : 1-b(n-1)]
References
- S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 27.
Crossrefs
Cf. A110240 for Rule 30.
Programs
-
Java
/** Java class to generate sequence */ public class r30seqA { static String zero="0",one="1"; public static void main(String[] args) { int base10 = 1; System.out.println(base10); for(int i=0; i<30; i++) System.out.println(base10 = base10Convert(applyR30(Integer.toBinaryString(base10)))); } static String applyR30(String base2) { int a0,a1,a2,newDigit; StringBuffer newBase2 = new StringBuffer(); for(int i=-1; i
Formula
If b(n) is current binary digit, perform for each digit to get next integer in sequence: b(n) = (b(n)==0 && b(n+1)==0) ? b(n-1) : 1-b(n-1);//Wolfram's Rule 30*
Extensions
Definition modified by N. J. A. Sloane, Jul 28 2014
Comments