A074914 Order of group of n X n X n Rubik cube, under assumptions not-s, m, i.
1, 3674160, 43252003274489856000, 31180187340244394380451751732775816935095098996162560000000000, 55852096265861522186773299669081144244056150466856272776458775940912440274885530047848906752000000000000000000
Offset: 1
Keywords
References
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 452.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
Links
- Alan Bawden, Cube Lovers Archive, Part 6
Programs
-
Maple
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; B := (n-1)/2; C := (n-1)/2; D := 0; E := (n+4)*(n-1)*(n-3)/24; F := 0; G := 0; else A := n/2; B := n/2; C := 0; D := 0; E := n*(n^2-4)/24; F := 1; G := 0; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
Comments