cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074924 Numbers whose square is the sum of two successive primes.

This page as a plain text file.
%I A074924 #51 Dec 03 2024 12:45:03
%S A074924 6,10,12,24,42,48,62,72,84,90,110,120,122,174,204,208,220,232,240,264,
%T A074924 306,326,336,372,386,408,410,444,454,456,468,470,474,522,546,550,594,
%U A074924 600,630,640,642,686,740,750,762,766,788,802,852,876,882,920,936,970
%N A074924 Numbers whose square is the sum of two successive primes.
%H A074924 Zak Seidov, <a href="/A074924/b074924.txt">Table of n, a(n) for n = 1..22054</a> (all terms up to 10^6).
%F A074924 a(n) = sqrt(A062703(n)). - _Zak Seidov_, May 26 2013
%F A074924 a(n) = A000040(i) + A000040(i+1) with i = A064397(n) = A000720(A061275(n)). - _M. F. Hasler_, Jan 03 2020
%e A074924 6^2 = 17 + 19, 1610^2 = 1296041 + 1296059.
%p A074924 filter:= proc(n) local t; t:= n^2/2; prevprime(ceil(t)) + nextprime(floor(t)) = n^2 end proc:
%p A074924 select(filter, [$3..1000]); # _Robert Israel_, Nov 19 2024
%t A074924 Select[Sqrt[#]&/@(Total/@Partition[Prime[Range[50000]],2,1]),IntegerQ] (* _Harvey P. Dale_, Oct 04 2014 *)
%t A074924 f@n_ := Sqrt@Select[(2*Range@n)^2, # == Plus @@ NextPrime[#/2, {-1, 1}] &]; f@485 (* _Hans Rudolf Widmer_, Nov 19 2024 *)
%o A074924 (PARI) is(n)=if(n%2, return(0)); nextprime(n^2/2+1)+precprime(n^2/2)==n^2 \\ _Charles R Greathouse IV_, Apr 29 2015
%o A074924 (PARI) select( {is_A074924(n)=!bittest(n=n^2,0) && precprime(n\2)+nextprime(n\/2)==n}, [1..999]) \\ _M. F. Hasler_, Jan 03 2020
%o A074924 (PARI) A74924=[6]; apply( A074924(n)={while(n>#A74924, my(N=A74924[#A74924]); until( is_A074924(N+=2),);A74924=concat(A74924,N));A74924[n]}, [1..99]) \\ _M. F. Hasler_, Jan 03 2020
%o A074924 (Python)
%o A074924 from itertools import count, islice
%o A074924 from sympy import nextprime, prevprime
%o A074924 def agen(): # generator of terms
%o A074924     for k in count(4, step=2):
%o A074924         kk = k*k
%o A074924         if prevprime(kk//2+1) + nextprime(kk//2-1) == kk:
%o A074924             yield k
%o A074924 print(list(islice(agen(), 54))) # _Michael S. Branicky_, May 24 2022
%Y A074924 Square roots of squares in A001043.
%Y A074924 Cf. A062703 (the squares), A061275 (lesser of the primes), A064397 (index of that prime).
%Y A074924 Cf. A064397 (numbers n such that prime(n) + prime(n+1) is a square), A071220 (prime(n) + prime(n+1) is a cube), A074925 (n^3 is sum of 2 consecutive primes).
%K A074924 nonn
%O A074924 1,1
%A A074924 _Zak Seidov_, Oct 02 2002
%E A074924 Crossrefs section corrected and extended by _M. F. Hasler_, Jan 03 2020