This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074940 #54 Oct 29 2024 12:24:38 %S A074940 2,5,6,7,8,11,14,15,16,17,18,19,20,21,22,23,24,25,26,29,32,33,34,35, %T A074940 38,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62, %U A074940 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,83,86,87,88,89,92 %N A074940 Numbers having at least one 2 in their ternary representation. %C A074940 Also, numbers m such that 3 divides C(2m,m). %C A074940 Also, numbers m such that the central trinomial coefficient A002426(m) == 0 (mod 3). - _Emeric Deutsch_ and _Bruce E. Sagan_, Dec 04 2003 %C A074940 Also, numbers m such that A092255(m) == 0 (mod 3). - _Benoit Cloitre_, Mar 22 2004 %C A074940 Also, numbers m such that the coefficient of x^m equals 0 in Product_{k>=0} (1-x^(3^k)). - _N. J. A. Sloane_, Jun 01 2010 %H A074940 Charles R Greathouse IV, <a href="/A074940/b074940.txt">Table of n, a(n) for n = 1..10000</a> %H A074940 Emeric Deutsch and Bruce E. Sagan, <a href="http://arxiv.org/abs/math.CO/0407326">Congruences for Catalan and Motzkin numbers and related sequences</a>, arXiv:math/0407326 [math.CO], 2004. %H A074940 Emeric Deutsch and Bruce E. Sagan, <a href="http://dx.doi.org/10.1016/j.jnt.2005.06.005">Congruences for Catalan and Motzkin numbers and related sequences</a>, J. Num. Theory 117 (2006), 191-215. %F A074940 a(n) = n + O(n^0.631). - _Charles R Greathouse IV_, Aug 21 2011 %e A074940 12 is not in the sequence since it is 110_3, but 11 is in the sequence since it is 102_3. - _Michael B. Porter_, Jun 30 2016 %t A074940 Select[Range@ 120, MemberQ[IntegerDigits[#, 3], 2] &] (* or *) %t A074940 Select[Range@ 120, Divisible[Binomial[2 #, #], 3] &] (* _Michael De Vlieger_, Jun 29 2016 *) %t A074940 Select[Range[100],DigitCount[#,3,2]>0&] (* _Harvey P. Dale_, Aug 25 2019 *) %o A074940 (PARI) is(n)=while(n,if(n%3==2,return(1));n\=3);0 \\ _Charles R Greathouse IV_, Aug 21 2011 %o A074940 (Haskell) %o A074940 a074940 n = a074940_list !! (n-1) %o A074940 a074940_list = filter ((== 0) . a039966) [0..] %o A074940 -- _Reinhard Zumkeller_, Jun 06 2012, Sep 29 2011 %o A074940 (Python) %o A074940 from gmpy2 import digits %o A074940 def A074940(n): %o A074940 def f(x): %o A074940 s = digits(x,3) %o A074940 for i in range(l:=len(s)): %o A074940 if s[i]>'1': %o A074940 break %o A074940 else: %o A074940 return n+int(s,2) %o A074940 return n+int(s[:i]+'1'*(l-i),2) %o A074940 m, k = n, f(n) %o A074940 while m != k: m, k = k, f(k) %o A074940 return m # _Chai Wah Wu_, Oct 29 2024 %Y A074940 Complement of A005836. %Y A074940 Cf. A006996, A007089, A081603, A081610, A081605, A081606. %Y A074940 A039966(a(n)) = 0. %K A074940 easy,nonn %O A074940 1,1 %A A074940 _Benoit Cloitre_ and _Reinhard Zumkeller_, Oct 04 2002; revised Dec 03 2003 %E A074940 More terms from _Emeric Deutsch_ and _Bruce E. Sagan_, Dec 04 2003