cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074946 Positive integers n for which the sum of the prime-factorization exponents of n (bigomega(n) = A001222(n)) divides n.

This page as a plain text file.
%I A074946 #32 Jul 10 2020 03:49:56
%S A074946 2,3,4,5,6,7,10,11,12,13,14,16,17,18,19,22,23,24,26,27,29,30,31,34,36,
%T A074946 37,38,40,41,42,43,45,46,47,53,56,58,59,60,61,62,63,66,67,71,73,74,75,
%U A074946 78,79,80,82,83,84,86,88,89,94,96,97,99,100,101,102,103,104,105,106
%N A074946 Positive integers n for which the sum of the prime-factorization exponents of n (bigomega(n) = A001222(n)) divides n.
%C A074946 If n is prime, trivially n is in the sequence.
%C A074946 The asymptotic density of this sequence is 0 (Erdős and Pomerance, 1990). - _Amiram Eldar_, Jul 10 2020
%H A074946 Keenan J. A. Down, <a href="/A074946/b074946.txt">Table of n, a(n) for n = 1..10000</a>
%H A074946 Paul Erdős and Carl Pomerance, <a href="https://math.dartmouth.edu/~carlp/PDF/paper79.pdf">On a theorem of Besicovitch: values of arithmetic functions that divide their arguments</a>, Indian J. Math., Vol. 32 (1990), pp. 279-287.
%F A074946 a(n) seems to be asymptotic to c*n*log(log(n)) with 1.128 < c < 1.13.
%t A074946 Select[Range[2, 120], Divisible[#, PrimeOmega[#]] &] (* _Jean-François Alcover_, Jun 08 2013 *)
%Y A074946 Cf. A001222, A134334 (complement).
%K A074946 easy,nonn
%O A074946 1,1
%A A074946 _Benoit Cloitre_, Oct 05 2002
%E A074946 Revised definition from _Leroy Quet_, Sep 11 2008
%E A074946 More terms from _Keenan J. A. Down_, Dec 08 2016
%E A074946 Smaller boundary for 'c' from _Keenan J. A. Down_, Dec 08 2016