This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074962 #118 May 08 2025 00:16:57 %S A074962 1,2,8,2,4,2,7,1,2,9,1,0,0,6,2,2,6,3,6,8,7,5,3,4,2,5,6,8,8,6,9,7,9,1, %T A074962 7,2,7,7,6,7,6,8,8,9,2,7,3,2,5,0,0,1,1,9,2,0,6,3,7,4,0,0,2,1,7,4,0,4, %U A074962 0,6,3,0,8,8,5,8,8,2,6,4,6,1,1,2,9,7,3,6,4,9,1,9,5,8,2,0,2,3,7,4,3,9,4,2,0,6,4,6,1,2,0 %N A074962 Decimal expansion of Glaisher-Kinkelin constant A. %C A074962 Arises in expressions such as A002109(n) = 1^1*2^2*3^3*...*n^n which is asymptotic to A*n^(n^2/2 + n/2 + 1/12)*exp(-n^2/4). See A002109 for more references and links. %C A074962 Named after the English mathematician and astronomer James Whitbread Lee Glaisher (1848-1928) and the Swiss mathematician Hermann Kinkelin (1832-1913). - _Amiram Eldar_, Jun 15 2021 %D A074962 Steven R. Finch, Mathematical constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, p. 135. %D A074962 Konrad Knopp, Theory and applications of infinite series, Dover, p. 555. %H A074962 Gheorghe Coserea, <a href="/A074962/b074962.txt">Table of n, a(n) for n = 1..10010</a> %H A074962 L. Almodovar, V. H. Moll, H. Quand, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Moll/moll3.html">Infinite products arising in paperfolding</a>, JIS 19 (2016) # 16.5.1 eq. (13) %H A074962 Chao-Ping Chen and Long Lin, <a href="http://dx.doi.org/10.1016/j.jnt.2013.02.011">Asymptotic expansions related to Glaisher-Kinkelin constant based on the Bell polynomials</a>, Journal of Number Theory, Vol. 133 (2013), pp. 2699-2705. %H A074962 Ovidiu Furdui, proposer, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.118.09.846">Problem 11494</a>, Amer. Math. Monthly, Vol. 118, No. 9 (2011), 850-852. %H A074962 J. W. L. Glaisher, <a href="http://www.archive.org/stream/messengermathem01glaigoog#page/n57/mode/1up">On the Product 1^1.2^2.3^3...n^n</a>, The Messenger of Mathematics, Vol. 7 (1878), pp. 43-47. %H A074962 Antonio Gracia Llorente, <a href="https://osf.io/preprints/osf/tbew4_v1">A Simple Limit-Product Formula for Glaisher’s Constant</a>, OSF Preprint, 2025. %H A074962 Jesús Guillera and Jonathan Sondow, <a href="http://arXiv.org/abs/math.NT/0506319">Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent</a>, Ramanujan J., Vol. 16 (2008), pp. 247-270; see Examples 5.2, 5.7, 5.11. %H A074962 Fredrik Johansson et al., mpmath, <a href="http://mpmath.org/doc/current/functions/constants.html">Mathematical constants (Mpmath)</a>. %H A074962 Fredrik Johansson et al., mpmath, <a href="https://www.webcitation.org/6BoWvFMX1?url=http://mpmath.googlecode.com/svn/data/glaisher.txt">Glaisher's constant to 20,000 digits</a>. %H A074962 Hermann Kinkelin, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002150824&IDDOC=266726">Über eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechnung</a>, Journal für die reine und angewandte Mathematik, Vol. 57 (1860), pp. 122-138. %H A074962 Jonathan Sondow and Petros Hadjicostas, <a href="http://dx.doi.org/10.1016/j.jmaa.2006.09.081">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, J. Math. Anal. Appl., Vol. 332, No. 1 (2007), pp. 292-314; see Section 5. %H A074962 Robert A. Van Gorder, <a href="https://doi.org/10.1142/S1793042112500297">Glaisher-type products over the primes</a>, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550. %H A074962 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Glaisher-KinkelinConstant.html">Glaisher-Kinkelin Constant</a>. %H A074962 Wikipedia, <a href="https://en.wikipedia.org/wiki/Glaisher%E2%80%93Kinkelin_constant">Glaisher-Kinkelin constant</a>. %F A074962 A = 2^(1/36)*Pi^(1/6)*exp(1/3*(-Gamma/4 + s(2)/3 - s(3)/4 + ...)) where s(k) denotes Sum_{n>=0} 1/(2n+1)^k. %F A074962 Closed expressions for A are exp(-zeta'(2)/2/Pi^2 + log(2*Pi)/12 + Gamma/12) or exp(1/12-zeta'(-1)). %F A074962 Equals (2*Pi)^(1/4) / limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2). - _Vaclav Kotesovec_, Dec 02 2023 %F A074962 Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^4-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(2)/2 = 1/12 (Van Gorder, 2012). - _Amiram Eldar_, Feb 08 2024 %F A074962 Equals e^(-1/4 + Integral_{x=1..2} x*log(sqrt(2*Pi)) - B_2(x) + x^2*Psi(x)/2 dx), where B_2(x) is the second Bernoulli polynomial and Psi(x) is the digamma function. - _Andrea Pinos_, Apr 16 2024 %F A074962 Equals exp(1/12 - 2*Integral_{x=0..oo} x*log(x)/(exp(2*Pi*x) - 1) dx) = exp(1/3 + 7*log(2)/36 - log(Pi)/6 + (2/3)*Integral_{x=0..1/2} log(Gamma(x+1)) dx) (see Finch). - _Stefano Spezia_, Dec 01 2024 %F A074962 From _Antonio Graciá Llorente_, May 03 2025: (Start) %F A074962 Equals lim_{n->oo} (2^(13/3)*n)^(1/12) * Product_{k=1..n} (1 - 1/(2*k+1)^2)^((2*k+1)/6). %F A074962 Equals lim_{n->oo} (24*n^2)^(1/24) * Product_{prime p<=n} (p^(1 - p/(p^2-1)) / sqrt(p^2-1))^(1/12). (End) %e A074962 1.2824271291006226368753425688697917277676889273250011920637400217404... %p A074962 evalf(limit(product(k^k,k=1..n)/(n^(n^2/2+n/2+1/12)*exp(-n^2/4)),n=infinity),120); # _Vaclav Kotesovec_, Oct 23 2014 %t A074962 RealDigits[Glaisher, 10, 111][[1]] (* _Robert G. Wilson v_ *) %o A074962 (PARI) x=10^(-100); exp(1/12-(zeta(-1+x)-zeta(-1))/x) %o A074962 (PARI) exp(1/12-zeta'(-1)) \\ _Charles R Greathouse IV_, Dec 12 2013 %Y A074962 Cf. A001620, A243262, A243263, A243264, A243265. %Y A074962 Cf. A000178, A002109, A051675, A255321, A255323, A255344. %K A074962 nonn,cons,nice %O A074962 1,2 %A A074962 _Benoit Cloitre_, Oct 05 2002 %E A074962 More terms from _Sascha Kurz_, Feb 03 2003