This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074964 #23 Feb 03 2022 09:32:26 %S A074964 1,2,3,4,6,8,12,18,24,60 %N A074964 Numbers k such that Max ( sigma(x*y) : 1 <= x <= k, 1 <= y <= k ) = sigma(k^2). %C A074964 Sequence is probably finite. %C A074964 The next term in the sequence, if it exists, is larger than 40000. - _Stewart Gordon_, Sep 27 2011 %C A074964 Conjecture: subsequence of A066522, implying finiteness. - _Reinhard Zumkeller_, Nov 14 2011 %F A074964 A074963(a(n)) = A065764(a(n)). - _Reinhard Zumkeller_, Nov 14 2011 %p A074964 with(numtheory): s := proc(n) option remember: return sigma(n): end: a:= proc(n) option remember: if(n=0)then return 0: fi: return max(a(n-1),seq(s(x*n),x=1..n)): end: for n from 1 to 100 do if(a(n)=s(n^2))then printf("%d, ", n): end: od: # _Nathaniel Johnston_, Sep 26 2011 %o A074964 (Haskell) %o A074964 a074964 n = a074964_list !! (n-1) %o A074964 a074964_list = filter (\x -> a074963 x == a065764 x) [1..] %o A074964 -- _Reinhard Zumkeller_, Nov 14 2011 %o A074964 (PARI) isok(k) = vecmax(setbinop((x,y)->sigma(x*y), [1..k])) == sigma(k^2); \\ _Michel Marcus_, Feb 03 2022 %Y A074964 Cf. A000203, A066522, A065764, A074963. %K A074964 nonn,more %O A074964 1,2 %A A074964 _Benoit Cloitre_, Oct 05 2002