cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074971 Number of partitions of n into distinct parts of order n.

This page as a plain text file.
%I A074971 #12 Dec 19 2018 15:12:06
%S A074971 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,3,1,2,1,1,1,4,1,1,1,2,1,4,1,1,1,1,
%T A074971 1,6,1,1,1,3,1,3,1,1,1,1,1,6,1,1,1,1,1,4,1,2,1,1,1,32,1,1,1,1,1,3,1,1,
%U A074971 1,1,1,25,1,1,1,1,1,2,1,4,1,1,1,24,1,1,1,2,1,24,1,1,1,1,1,12,1,1,1,3,1,2
%N A074971 Number of partitions of n into distinct parts of order n.
%C A074971 Order of partition is lcm of its parts.
%H A074971 Antti Karttunen, <a href="/A074971/b074971.txt">Table of n, a(n) for n = 1..16384</a>
%F A074971 Coefficient of x^n in expansion of Sum_{i divides n} mu(n/i)*Product_{j divides i} (1+x^j).
%e A074971 The a(36) = 6 partitions are (36), (18,12,6), (18,12,4,2), (18,12,3,2,1), (18,9,4,3,2), (12,9,6,4,3,2). - _Gus Wiseman_, Aug 01 2018
%o A074971 (PARI) A074971(n) = { my(q=0); fordiv(n,i,my(p=1); fordiv(i,j,p *= (1 + 'x^j)); q += moebius(n/i)*p); polcoeff(q,n); }; \\ _Antti Karttunen_, Dec 19 2018
%Y A074971 Cf. A000837, A074761, A285572, A290103, A305566, A316431, A316433, A317624.
%Y A074971 Cf. also A033630.
%K A074971 nonn
%O A074971 1,6
%A A074971 _Vladeta Jovovic_, Oct 05 2002