A075033 Numbers n such that tau(n) <= tau(n+1) <= tau(n+2) <= tau(n+3) where tau(n) = number of divisors of n.
1, 13, 25, 33, 37, 61, 73, 85, 93, 97, 121, 133, 141, 145, 157, 187, 193, 201, 205, 213, 217, 229, 241, 242, 243, 253, 277, 283, 301, 361, 373, 393, 397, 421, 427, 445, 453, 457, 481, 537, 541, 547, 603, 613, 633, 661, 662, 663, 697, 723, 733, 745, 757, 781
Offset: 1
Keywords
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{s = Partition[Differences@ Array[DivisorSigma[0, #] &, 800], 3, 1]}, Position[s, ?(AllTrue[#, # >= 0 &] &), {1}, Heads -> False][[All, 1]]] (* _Michael De Vlieger, Jun 28 2020 *)
-
Python
from sympy import divisor_count as tau [n for n in range(1, 801) if tau(n) <= tau(n+1) <= tau(n+2) <= tau(n+3)] # Karl V. Keller, Jr., Jul 10 2020
Extensions
Added missing term and a(11)-a(54) from Donovan Johnson, Jun 15 2009