cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075092 Sum of generalized tribonacci numbers (A001644) and reflected generalized tribonacci numbers (A073145).

This page as a plain text file.
%I A075092 #19 Jan 05 2025 19:51:37
%S A075092 6,0,2,12,6,20,50,56,134,264,402,836,1542,2652,5154,9392,16902,31824,
%T A075092 58082,106172,197126,360932,662994,1223784,2245766,4130520,7606770,
%U A075092 13976436,25711622,47310252,86978370,160002656,294324230,541249952
%N A075092 Sum of generalized tribonacci numbers (A001644) and reflected generalized tribonacci numbers (A073145).
%C A075092 Conjecture: a(n) >= 0.
%C A075092 For n > 2, a(n) is the number of cyclic sequences (q1, q2, ..., qn) consisting of zeros, ones and twos such that each triple contains 0 and 1 at least once, provided the positions of the zeros and ones are fixed on a circle. For example, a(5)=20 because only the sequences (00101), (01001), (01010), (01011), (01012), (01021), (01101), (01201), (02101), (20101) and those obtained from them by exchanging 0 and 1 contain 0 and 1 in each triple (including triples q4, q5, q1 and q5, q1, q2). For n = 1, 2 the statement is still true provided we allow the sequence to wrap around itself on a circle. E.g., a(2) = 2 since only sequences 01 and 10 can be wrapped so one obtains (010) and (101), respectively. - _Wojciech Florek_, Nov 25 2021
%H A075092 G. C. Greubel, <a href="/A075092/b075092.txt">Table of n, a(n) for n = 0..1000</a>
%H A075092 Wojciech Florek, <a href="http://doi.org/10.1016/j.amc.2018.06.014">A class of generalized Tribonacci sequences applied to counting problems</a>, Appl. Math. Comput., 338 (2018), 809-821.
%H A075092 W. O. J. Moser, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/31-1/moser.pdf">Cyclic binary strings without long runs of like (alternating) bits</a>, Fibonacci Quart. 31(1) (1993), 2-6.
%H A075092 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,4,1,0,-1).
%F A075092 a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0)=6, a(1)=0, a(2)=2, a(3)=12, a(4)=6, a(5)=20.
%F A075092 G.f.: (6 - 4*x^2 - 12*x^3 - 2*x^4)/(1 - x^2 - 4*x^3 - x^4 + x^6).
%t A075092 CoefficientList[Series[(6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6), {x, 0, 40}], x]
%o A075092 (PARI) my(x='x+O('x^40)); Vec((6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6)) \\ _G. C. Greubel_, Apr 13 2019
%o A075092 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6) ));  // _G. C. Greubel_, Apr 13 2019
%o A075092 (Sage) ((6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 13 2019
%Y A075092 Cf. A001644, A073145, A075091, A294627.
%K A075092 easy,nonn
%O A075092 0,1
%A A075092 Mario Catalani (mario.catalani(AT)unito.it), Aug 31 2002