This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075109 #44 Feb 26 2025 01:55:16 %S A075109 1,9,25,27,49,81,121,125,169,225,243,289,343,361,441,529,625,729,841, %T A075109 961,1089,1225,1331,1369,1521,1681,1849,2025,2187,2197,2209,2401,2601, %U A075109 2809,3025,3125,3249,3375,3481,3721,3969,4225,4489,4761,4913,5041,5329,5625 %N A075109 Odd perfect powers (1 together with numbers m^k, m odd, k >= 2). %H A075109 Reinhard Zumkeller, <a href="/A075109/b075109.txt">Table of n, a(n) for n = 1..10000</a> %F A075109 Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=2} mu(k)*(1-zeta(k)*(2^k-1)/2^k) = 1.2890375574... - _Amiram Eldar_, Dec 19 2020 %p A075109 q:= n-> n=1 or n::odd and igcd(seq(i[2], i=ifactors(n)[2]))>1: %p A075109 select(q, [$1..6000])[]; # _Alois P. Heinz_, May 04 2022 %t A075109 Take[Union[Flatten[Table[a^b, {a, 1, 99, 2}, {b, 2, 15}]]], 50] (* _Alonso del Arte_, Nov 22 2011 *) %o A075109 (Haskell) %o A075109 a075109 n = a075109_list !! (n-1) %o A075109 a075109_list = filter odd a001597_list -- _Reinhard Zumkeller_, Oct 04 2012 %o A075109 (Magma) [1] cat [n : n in [3..6000 by 2] | IsPower(n) ]; // _Vincenzo Librandi_, Mar 31 2014 %o A075109 (PARI) isok(m) = (m==1) || ((m%2) && ispower(m)); \\ _Michel Marcus_, May 04 2022 %o A075109 (Python) %o A075109 from sympy import mobius, integer_nthroot %o A075109 def A075109(n): %o A075109 def bisection(f,kmin=0,kmax=1): %o A075109 while f(kmax) > kmax: kmax <<= 1 %o A075109 kmin = kmax >> 1 %o A075109 while kmax-kmin > 1: %o A075109 kmid = kmax+kmin>>1 %o A075109 if f(kmid) <= kmid: %o A075109 kmax = kmid %o A075109 else: %o A075109 kmin = kmid %o A075109 return kmax %o A075109 def f(x): return int(n-1+x+sum(mobius(k)*((integer_nthroot(x,k)[0]+1>>1)-1) for k in range(2,x.bit_length()))) %o A075109 return bisection(f,n,n) # _Chai Wah Wu_, Feb 25 2025 %Y A075109 Intersection of A001597 and A005408. %Y A075109 Cf. A008683, A075090. %K A075109 easy,nonn %O A075109 1,2 %A A075109 _Zak Seidov_, Oct 11 2002 %E A075109 Definition clarified by _N. J. A. Sloane_, Dec 25 2021