cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075116 Binomial transform of A073817: a(n)=Sum(Binomial(n,k)*A073817(k),(k=0,..,n)).

This page as a plain text file.
%I A075116 #6 Jun 24 2017 11:11:07
%S A075116 4,5,9,23,69,210,627,1846,5405,15809,46254,135382,396327,1160294,
%T A075116 3396892,9944688,29113741,85232259,249522603,730492701,2138562494,
%U A075116 6260774221,18328804756,53658712275,157089206159,459888386910
%N A075116 Binomial transform of A073817: a(n)=Sum(Binomial(n,k)*A073817(k),(k=0,..,n)).
%H A075116 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A075116 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,6,-1).
%F A075116 a(n)=5a(n-1)-8a(n-2)+6a(n-3)-a(n-4), a(0)=4, a(1)=5, a(2)=9, a(3)=23. G.f.: (4-15*z+16*z^2-6*z^3)/(1-5*z+8*z^2-6*z^3+z^4).
%t A075116 CoefficientList[Series[(4-15*z+16*z^2-6*z^3)/(1-5*z+8*z^2-6*z^3+z^4), {z, 0, 30}], z]
%t A075116 LinearRecurrence[{5,-8,6,-1},{4,5,9,23},30] (* _Harvey P. Dale_, Jun 24 2017 *)
%Y A075116 Cf. A073817.
%K A075116 easy,nonn
%O A075116 0,1
%A A075116 Mario Catalani (mario.catalani(AT)unito.it), Sep 02 2002