cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075149 Sum_{i=0..2*A053645(n)} (C(2*A053645(n),i) mod 2)*A000045(n-i) [where C(r,c) is the binomial coefficient (A007318) and A000045(n) is the n-th Fibonacci number].

This page as a plain text file.
%I A075149 #13 Jan 05 2025 19:51:37
%S A075149 0,1,1,3,3,7,9,21,21,47,63,141,147,329,441,987,987,2207,2961,6621,
%T A075149 6909,15449,20727,46347,46389,103729,139167,311187,324723,726103,
%U A075149 974169,2178309,2178309,4870847,6534927,14612541,15248163,34095929,45744489
%N A075149 Sum_{i=0..2*A053645(n)} (C(2*A053645(n),i) mod 2)*A000045(n-i) [where C(r,c) is the binomial coefficient (A007318) and A000045(n) is the n-th Fibonacci number].
%H A075149 A. Karttunen, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/42-1/quartkarttunen01_2004.pdf">On Pascal's Triangle Modulo 2 in Fibonacci Representation</a>, Fibonacci Quarterly, 42 (2004), 38-46.
%p A075149 with(combinat); [seq(A075149(n,n=0..50)]; A075149 := n -> add((binomial(2*r(n),i) mod 2)*fibonacci(n-i),i=0..2*r(n));
%p A075149 r := n -> n - 2^floor_log_2(n);
%p A075149 floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
%Y A075149 Bisection gives A050614.
%K A075149 nonn
%O A075149 0,4
%A A075149 _Antti Karttunen_, Sep 05 2002