cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075167 Number of edges in each rooted plane tree produced with the unranking algorithm presented in A075166, which is based on prime factorization.

This page as a plain text file.
%I A075167 #16 Jan 16 2015 10:18:52
%S A075167 0,1,2,2,3,3,4,3,3,4,5,4,6,5,4,3,7,4,8,5,5,6,9,4,4,7,4,6,10,5,11,4,6,
%T A075167 8,5,5,12,9,7,5,13,6,14,7,5,10,15,5,5,5,8,8,16,5,6,6,9,11,17,6,18,12,
%U A075167 6,4,7,7,19,9,10,6,20,5,21,13,5,10,6,8,22,6,4,14,23,7,8,15,11,7,24,6,7,11
%N A075167 Number of edges in each rooted plane tree produced with the unranking algorithm presented in A075166, which is based on prime factorization.
%C A075167 Each n occurs A000108(n) times in total.
%H A075167 Antti Karttunen, <a href="/A075167/b075167.txt">Table of n, a(n) for n = 1..10000</a>
%F A075167 a(n) = A106457(A106442(n)). - _Antti Karttunen_, May 09 2005
%F A075167 From _Antti Karttunen_, Jan 16 2015: (Start)
%F A075167 a(1) = 0; for n>1: a(n) = a(A071178(n)) + (A061395(n) - A061395(A051119(n))) + A253783(A051119(n)).
%F A075167 Other identities.
%F A075167 For all n >= 2, a(n) = A055642(A075166(n))/2. [Half of the number of decimal digits in A075166(n).]
%F A075167 For all n >= 2, a(n) = A029837(1+A075165(n))/2. [Half of the binary width of A075165(n).]
%F A075167 For all n >= 1, a(n) = A000120(A075165(n)). [Thus also the binary weight of A075165(n), because half of the bits are zeros.]
%F A075167 (End)
%o A075167 (Scheme, with memoization-macro definec)
%o A075167 (definec (A075167 n) (if (= 1 n) 0 (+ (A075167 (A071178 n)) (- (A061395 n) (A061395 (A051119 n))) (A253783 (A051119 n)))))
%o A075167 ;; _Antti Karttunen_, Jan 16 2015
%Y A075167 Permutation of A072643 and A106457.
%Y A075167 A253782 gives the positions where this sequence differs from A252464 (first time at n=16).
%Y A075167 Cf. A000108, A000120, A029837, A055642, A051119, A061395, A071178, A075165, A075166, A106442, A253783.
%Y A075167 Cf. also A106490.
%K A075167 nonn
%O A075167 1,3
%A A075167 _Antti Karttunen_, Sep 13 2002
%E A075167 More terms from _Antti Karttunen_, May 09 2005