A075194 Binomial transform of pentanacci numbers A074048: a(n)=Sum((-1)^k*Binomial(n,k)*A074048(k),(k=0,..,n)).
5, 4, 6, 4, 6, 4, 0, -24, -82, -212, -454, -876, -1548, -2544, -3858, -5276, -6050, -4348, 3744, 25768, 75206, 174444, 357858, 673076, 1175972, 1909904, 2851270, 3789508, 4089238, 2255044, -4809280, -22969880, -62544962, -140412180, -281990486, -521513324, -896946156, -1432099056
Offset: 0
Links
- N. J. A. Sloane, Transforms
- Index entries for linear recurrences with constant coefficients, signature (4, -5, 0, 5, -4).
Crossrefs
Cf. A074048.
Programs
-
Mathematica
CoefficientList[Series[(5-16x+15x^2-5x^4)/(1-4x+5x^2-5x^4+4x^5), {x, 0, 40}], x]
Formula
a(n)=4a(n-1)-5a(n-2)+5a(n-4)-4a(n-5), a(0)=5, a(1)=4, a(2)=6, a(3)=4, a(4)=6. G.f.: (5-16x+15x^2-5x^4)/(1-4x+5x^2-5x^4+4x^5).