This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075196 #26 Feb 20 2025 12:02:10 %S A075196 1,2,2,3,6,3,4,12,14,5,5,20,38,33,7,6,30,80,117,70,11,7,42,145,305, %T A075196 330,149,15,8,56,238,660,1072,906,298,22,9,72,364,1260,2777,3622,2367, %U A075196 591,30,10,90,528,2198,6174,11160,11676,6027,1132,42,11,110,735,3582,12292,28784,42805,36450,14873,2139,56 %N A075196 Table T(n,k) by antidiagonals: T(n,k) = number of partitions of n balls of k colors. %C A075196 For k>=1, n->infinity is log(T(n,k)) ~ (1+1/k) * k^(1/(k+1)) * Zeta(k+1)^(1/(k+1)) * n^(k/(k+1)). - _Vaclav Kotesovec_, Mar 08 2015 %H A075196 Alois P. Heinz, <a href="/A075196/b075196.txt">Rows n = 1..141, flattened</a> %F A075196 T(n,k) = Sum_{i=0..k} C(k,i) * A255903(n,i). - _Alois P. Heinz_, Mar 10 2015 %e A075196 Square array T(n,k) begins: %e A075196 1, 2, 3, 4, 5, ... %e A075196 2, 6, 12, 20, 30, ... %e A075196 3, 14, 38, 80, 145, ... %e A075196 5, 33, 117, 305, 660, ... %e A075196 7, 70, 330, 1072, 2777, ... %p A075196 with(numtheory): %p A075196 A:= proc(n, k) option remember; local d, j; %p A075196 `if`(n=0, 1, add(add(d*binomial(d+k-1, k-1), %p A075196 d=divisors(j)) *A(n-j, k), j=1..n)/n) %p A075196 end: %p A075196 seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # _Alois P. Heinz_, Sep 26 2012 %t A075196 Transpose[Table[nn=6;p=Product[1/(1- x^i)^Binomial[i+n,n],{i,1,nn}];Drop[CoefficientList[Series[p,{x,0,nn}],x],1],{n,0,nn}]]//Grid (* _Geoffrey Critzer_, Sep 27 2012 *) %Y A075196 Columns 1-10: A000041, A005380, A217093, A255050, A255052, A270239, A270240, A270241, A270242, A270243. %Y A075196 Rows 1-3: A000027, A002378, A162147. %Y A075196 Main diagonal: A075197. %Y A075196 Cf. A255903. %K A075196 nonn,tabl %O A075196 1,2 %A A075196 _Christian G. Bower_, Sep 07 2002