cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075268 Trajectory of 442 under the Reverse and Add! operation carried out in base 2.

This page as a plain text file.
%I A075268 #14 Sep 08 2022 08:45:07
%S A075268 442,629,1326,2259,5508,6585,11628,15129,24912,26259,52038,77337,
%T A075268 155394,221931,442374,639009,1179738,1917027,3539130,5062869,10666542,
%U A075268 18285939,45369156,54513657,96444396,125792217,207562704,220034931
%N A075268 Trajectory of 442 under the Reverse and Add! operation carried out in base 2.
%C A075268 22, 77 and 442 are the first terms of A075252. The base 2 trajectory of 442 is completely different from the trajectories of 22 (cf. A061561) and 77 (cf. A075253). Using the formula given below one can prove that it does not contain a palindrome.
%C A075268 lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 1.
%C A075268 lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 0.
%C A075268 Interleaving of 2*A177420, A177421, 6*A177422, 3*A177423.
%H A075268 Reinhard Zumkeller, <a href="/A075268/b075268.txt">Table of n, a(n) for n = 0..1000</a>
%H A075268 Klaus Brockhaus, <a href="/A058042/a058042.txt">On the 'Reverse and Add!' algorithm in base 2</a>
%H A075268 <a href="/index/Res#RAA">Index entries for sequences related to Reverse and Add!</a>
%F A075268 a(0), ..., a(28) as above; a(29) = 703932681; a(30) =1310348526; a(31) = 2309980455; a(32) = 6143702712; a(33) = 7131271077; a(34) = 12699398352; a(35) = 13441412493; for n > 35 and
%F A075268 n = 0 (mod 4): a(n) = 3*2^(2*k+23)-12576771*2^k where k = (n-16)/4;
%F A075268 n = 1 (mod 4): a(n) = 3*2^(2*k+23)+12576771*2^k-3 where k = (n-17)/4;
%F A075268 n = 2 (mod 4): a(n) = 6*2^(2*k+23)-12576771*2^k where k = (n-18)/4;
%F A075268 n = 3 (mod 4): a(n) = 6*2^(2*k+23)+37730313*2^k-3 where k = (n-19)/4.
%F A075268 G.f.: (442+629*x+372*x^3+1530*x^4-192*x^5-2244*x^6-852*x^7-3784*x^8-8090*x^9 +5046*x^10+29034*x^11+47016*x^12+54354*x^13+79152*x^14+70254*x^15+65196*x^16 +358986*x^17+724128*x^18+334026*x^19+2081820*x^20+6043662*x^21+18678462*x^22+8601966*x^23 -23147244*x^24-15039648*x^25 -31927752*x^26-67877562*x^27+43880046*x^28+297766074*x^29 +396480108*x^30+734881086*x^31+3072255774*x^32+1018370430*x^33-3939844260*x^34-4608944376*x^35 -6616834356*x^36-3107825028*x^37+6655931736*x^38+7777900872*x^39+484428384*x^40 -2233413600*x^41-62899200*x^42+188697600*x^43) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
%F A075268 G.f. for the sequence starting at a(36): 3*x^36*(8455782368+8724086815*x -8321630144*x^2-8589934590*x^3-17045716960*x^4-18118934750*x^5+16911564736*x^6 +17984782524*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
%F A075268 a(n+1) = A055944(a(n)). - _Reinhard Zumkeller_, Apr 21 2013
%e A075268 442 (decimal) = 110111010 -> 110111010 + 010111011 = 1001110101 = 629 (decimal).
%t A075268 NestWhileList[# + IntegerReverse[#, 2] &, 442,  # !=
%t A075268 IntegerReverse[#, 2] &, 1, 27] (* _Robert Price_, Oct 18 2019 *)
%o A075268 (PARI) trajectory(n,steps) = {local(v, k=n); for(j=0, steps, print1(k, ", "); v=binary(k); k+=sum(j=1, #v, 2^(j-1)*v[j]))};
%o A075268 trajectory(442,28);
%o A075268 (Magma) trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(442, 28, 2);
%o A075268 (Haskell)
%o A075268 a075268 n = a075268_list !! n
%o A075268 a075268_list = iterate a055944 442  -- _Reinhard Zumkeller_, Apr 21 2013
%Y A075268 Cf. A058042 (trajectory of 22 in base 2, written in base 2), A061561 (trajectory of 22 in base 2), A075253 (trajectory of 77 in base 2), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n).
%Y A075268 Cf. A177420 (a(4*n)/2), A177421 (a(4*n+1)), A177422 (a(4*n+2)/6), A177423 (a(4*n+3)/3).
%K A075268 base,nonn
%O A075268 0,1
%A A075268 _Klaus Brockhaus_, Sep 11 2002
%E A075268 Comment edited and three comments added, g.f. edited, PARI program revised, MAGMA program and crossrefs added by _Klaus Brockhaus_, May 07 2010