This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075272 #33 Aug 22 2025 04:25:59 %S A075272 1,2,6,34,422,11586,678982,82653026,20565923814,10362872458882, %T A075272 10517568142605446,21434335059927667362,87558678536857464017446, %U A075272 716228573446369122069676994,11725371140175829761708518252742 %N A075272 BinomialMean (BM) transform of A075271, which see for the definition of (BM). %C A075272 a(n) = 2*A075271(n-1), for n >= 1. %C A075272 Binomial transform of A005329. - _Vladimir Reshetnikov_, Nov 20 2015 %H A075272 Alois P. Heinz, <a href="/A075272/b075272.txt">Table of n, a(n) for n = 0..50</a> %H A075272 Michael Z. Spivey and Laura L. Steil, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, J. Integ. Seqs. Vol. 9 (2006), #06.1.1. %F A075272 G.f.: Sum_{n>=0} x^n*Product_{i=1..n}(2^i/(1+(2^i-1)*x)). - _Vladeta Jovovic_, Mar 10 2008 %F A075272 O.g.f. as a continued fraction of Stieltjes's type: 1/(1 - 2*x/(1 - x/(1 - 2^3*x/(1 - 3^2*x/(1 - 2^5*x/(1 - 7^2*x/(1 - 2^7*x/(1 - 15^2*x/(1 - 2^9*x/(1 - 31^2*x - ... )))))))))). Cf. A005329. - _Peter Bala_, Nov 10 2017 %p A075272 iBM:= proc(p) proc (n) option remember; add (2^(k) *p(k) *(-1)^(n-k) *binomial(n,k), k=0..n) end end: a:='a': aa:= iBM(a): a:= n-> `if` (n=0, 1, 2*aa(n-1)): seq (a(n), n=0..16); # _Alois P. Heinz_, Sep 09 2008 %t A075272 Table[Sum[QFactorial[k, 2] Binomial[n, k], {k, 0, n}], {n, 0, 15}] (* _Vladimir Reshetnikov_, Oct 16 2016 *) %Y A075272 Cf. A075271, A005329. %K A075272 nonn,easy,changed %O A075272 0,2 %A A075272 _John W. Layman_, Sep 11 2002 %E A075272 More terms from _Alois P. Heinz_, Sep 09 2008