cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075272 BinomialMean (BM) transform of A075271, which see for the definition of (BM).

This page as a plain text file.
%I A075272 #33 Aug 22 2025 04:25:59
%S A075272 1,2,6,34,422,11586,678982,82653026,20565923814,10362872458882,
%T A075272 10517568142605446,21434335059927667362,87558678536857464017446,
%U A075272 716228573446369122069676994,11725371140175829761708518252742
%N A075272 BinomialMean (BM) transform of A075271, which see for the definition of (BM).
%C A075272 a(n) = 2*A075271(n-1), for n >= 1.
%C A075272 Binomial transform of A005329. - _Vladimir Reshetnikov_, Nov 20 2015
%H A075272 Alois P. Heinz, <a href="/A075272/b075272.txt">Table of n, a(n) for n = 0..50</a>
%H A075272 Michael Z. Spivey and Laura L. Steil, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
%F A075272 G.f.: Sum_{n>=0} x^n*Product_{i=1..n}(2^i/(1+(2^i-1)*x)). - _Vladeta Jovovic_, Mar 10 2008
%F A075272 O.g.f. as a continued fraction of Stieltjes's type: 1/(1 - 2*x/(1 - x/(1 - 2^3*x/(1 - 3^2*x/(1 - 2^5*x/(1 - 7^2*x/(1 - 2^7*x/(1 - 15^2*x/(1 - 2^9*x/(1 - 31^2*x - ... )))))))))). Cf. A005329. - _Peter Bala_, Nov 10 2017
%p A075272 iBM:= proc(p) proc (n) option remember; add (2^(k) *p(k) *(-1)^(n-k) *binomial(n,k), k=0..n) end end: a:='a': aa:= iBM(a): a:= n-> `if` (n=0, 1, 2*aa(n-1)): seq (a(n), n=0..16); # _Alois P. Heinz_, Sep 09 2008
%t A075272 Table[Sum[QFactorial[k, 2] Binomial[n, k], {k, 0, n}], {n, 0, 15}] (* _Vladimir Reshetnikov_, Oct 16 2016 *)
%Y A075272 Cf. A075271, A005329.
%K A075272 nonn,easy,changed
%O A075272 0,2
%A A075272 _John W. Layman_, Sep 11 2002
%E A075272 More terms from _Alois P. Heinz_, Sep 09 2008