cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075300 Array A read by antidiagonals upwards: A(n, k) = array A054582(n,k) - 1 = 2^n*(2*k+1) - 1 with n,k >= 0.

This page as a plain text file.
%I A075300 #51 Jun 01 2025 16:57:33
%S A075300 0,1,2,3,5,4,7,11,9,6,15,23,19,13,8,31,47,39,27,17,10,63,95,79,55,35,
%T A075300 21,12,127,191,159,111,71,43,25,14,255,383,319,223,143,87,51,29,16,
%U A075300 511,767,639,447,287,175,103,59,33,18,1023,1535,1279,895,575,351,207,119
%N A075300 Array A read by antidiagonals upwards: A(n, k) = array A054582(n,k) - 1 = 2^n*(2*k+1) - 1 with n,k >= 0.
%C A075300 From _Philippe Deléham_, Feb 19 2014: (Start)
%C A075300 A(0,k)  = 2*k = A005843(k),
%C A075300 A(1,k)  = 4*k + 1 = A016813(k),
%C A075300 A(2,k)  = 8*k + 3 = A017101(k),
%C A075300 A(n,0)  = A000225(n),
%C A075300 A(n,1)  = A153893(n),
%C A075300 A(n,2)  = A153894(n),
%C A075300 A(n,3)  = A086224(n),
%C A075300 A(n,4)  = A052996(n+2),
%C A075300 A(n,5)  = A086225(n),
%C A075300 A(n,6)  = A198274(n),
%C A075300 A(n,7)  = A238087(n),
%C A075300 A(n,8)  = A198275(n),
%C A075300 A(n,9)  = A198276(n),
%C A075300 A(n,10) = A171389(n). (End)
%C A075300 A permutation of the nonnegative integers. - _Alzhekeyev Ascar M_, Jun 05 2016
%C A075300 The values in array row n, when expressed in binary, have n trailing 1-bits. - _Ruud H.G. van Tol_, Mar 18 2025
%H A075300 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A075300 From _Wolfdieter Lang_, Jan 31 2019: (Start)
%F A075300 Array A(n, k) = 2^n*(2*k+1) - 1, for n >= 0 and m >= 0.
%F A075300 The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1) - 1, n >= 0, k=0..n.
%F A075300 See also A054582 after subtracting 1. (End)
%F A075300 From _Ruud H.G. van Tol_, Mar 17 2025: (Start)
%F A075300 A(0, k) is even. For n > 0, A(n, k) is odd and (3 * A(n, k) + 1) / 2 = A(n-1, 3*k+1).
%F A075300 A(n, k) = 2^n - 1 (mod 2^(n+1)) (equivalent to the comment about trailing 1-bits). (End)
%e A075300 The array A begins:
%e A075300    0    2    4    6    8   10   12   14   16   18 ...
%e A075300    1    5    9   13   17   21   25   29   33   37 ...
%e A075300    3   11   19   27   35   43   51   59   67   75 ...
%e A075300    7   23   39   55   71   87  103  119  135  151 ...
%e A075300   15   47   79  111  143  175  207  239  271  303 ...
%e A075300   31   95  159  223  287  351  415  479  543  607 ...
%e A075300   ... - _Philippe Deléham_, Feb 19 2014
%e A075300 From _Wolfdieter Lang_, Jan 31 2019: (Start)
%e A075300 The triangle T begins:
%e A075300    n\k   0    1    2   3   4   5   6   7  8  9 10 ...
%e A075300    0:    0
%e A075300    1:    1    2
%e A075300    2:    3    5    4
%e A075300    3:    7   11    9   6
%e A075300    4:   15   23   19  13   8
%e A075300    5    31   47   39  27  17  10
%e A075300    6:   63   95   79  55  35  21  12
%e A075300    7:  127  191  159 111  71  43  25  14
%e A075300    8:  255  383  319 223 143  87  51  29 16
%e A075300    9:  511  767  639 447 287 175 103  59 33 18
%e A075300   10: 1023 1535 1279 895 575 351 207 119 67 37 20
%e A075300   ...
%e A075300 T(3, 1) = 2^2*(2*1+1) - 1 = 12 - 1 = 11.  (End)
%p A075300 A075300bi := (x,y) -> (2^x * (2*y + 1))-1;
%p A075300 A075300 := n -> A075300bi(A025581(n), A002262(n));
%p A075300 A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
%p A075300 A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
%t A075300 Table[(2^# (2 k + 1)) - 1 &[m - k], {m, 0, 10}, {k, 0, m}] (* _Michael De Vlieger_, Jun 05 2016 *)
%Y A075300 Inverse permutation: A075301. Transpose: A075302. The X-projection is given by A007814(n+1) and the Y-projection A025480.
%Y A075300 Cf. A002262, A025581, A054582, A241957.
%K A075300 nonn,tabl,easy
%O A075300 0,3
%A A075300 _Antti Karttunen_, Sep 12 2002