A075320 Pair the odd numbers such that the k-th pair is (r, r+2k) where r is the smallest odd number not included earlier: (1, 3), (5, 9), (7, 13), (11, 19), (15, 25), (17, 29), (21, 35), (23, 39), (27, 45), ... This is the sequence of the product of the members of pairs.
3, 45, 91, 209, 375, 493, 735, 897, 1215, 1581, 1815, 2257, 2747, 3053, 3619, 3969, 4611, 5301, 5723, 6489, 6955, 7797, 8687, 9225, 10191, 11205, 11815, 12905, 13559, 14725, 15939, 16665, 17955, 19293, 20091, 21505, 22347, 23837, 25375, 26289
Offset: 1
Keywords
Programs
-
Maple
A075320 := proc(nmax) local r,k,a,pairs ; a := [3] ; pairs := [1,3] ; k := 2 ; r := 5 ; while nops(a) < nmax do while r in pairs do r := r+2 ; od ; if r+2*k in pairs then printf("inconsistency",k) ; fi ; a := [op(a),r*(r+2*k)] ; pairs := [op(pairs),r,r+2*k] ; k := k+1 ; od ; RETURN(a) ; end: a := A075320(200) : for n from 1 to nops(a) do printf("%d,",op(n,a)) ; od ; # R. J. Mathar, Nov 12 2006
-
Python
from math import isqrt def A075320(n): return (m:=(n+isqrt(5*n**2)&-2)-1)*((n<<1)+m) # Chai Wah Wu, Aug 16 2022
Formula
Extensions
More terms from R. J. Mathar, Nov 12 2006