cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075324 Independent domination number for queens' graph Q(n).

This page as a plain text file.
%I A075324 #62 Aug 02 2024 18:54:23
%S A075324 1,1,1,3,3,4,4,5,5,5,5,7,7,8,9,9,9,10,11,11,11,12,13,13,13,14,15,15,
%T A075324 16,16,17
%N A075324 Independent domination number for queens' graph Q(n).
%D A075324 W. W. R. Ball and H. S. M. Coxeter, Math'l Rec. and Essays, 13th Ed. Dover, p. 173.
%D A075324 C. Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 304, Example 2.
%D A075324 M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1926, p. 49.
%H A075324 William Herbert Bird, <a href="https://dspace.library.uvic.ca/handle/1828/8634">Computational methods for domination problems</a>, University of Victoria, 2017. See Table 5.1 on p. 114.
%H A075324 Matthew D. Kearse and Peter B. Gibbons, <a href="http://ajc.maths.uq.edu.au/pdf/23/ocr-ajc-v23-p253.pdf">Computational Methods and New Results for Chessboard Problems</a>, Australasian Journal of Combinatorics 23 (2001), 253-284.
%H A075324 Alexis Langlois-Rémillard, Christoph Müßig, and Érika Róldan, <a href="https://arxiv.org/abs/2211.05651">Complexity of Chess Domination Problems</a>, arXiv:2211.05651 [math.CO], 2022.
%H A075324 Alexis Langlois-Rémillard, Christoph Müßig, and Érika Róldan, <a href="https://gist.github.com/PhoenixSmaug/16685620ebd46472ddbd1c961f69672a">Solution a(26)-a(31) and Julia code to compute the sequence</a>, 2022.
%e A075324 a(8) = 5 queens attacking all squares of standard chessboard:
%e A075324   . . . . . . . .
%e A075324   . . . . . Q . .
%e A075324   . . Q . . . . .
%e A075324   . . . . Q . . .
%e A075324   . . . . . . Q .
%e A075324   . . . Q . . . .
%e A075324   . . . . . . . .
%e A075324   . . . . . . . .
%Y A075324 A002567 gives the number of solutions.
%Y A075324 Cf. A075458 (not necessarily independent).
%K A075324 nonn,more
%O A075324 1,4
%A A075324 _N. J. A. Sloane_, Oct 16 2002
%E A075324 a(19)-a(24) from Bird and a(25) from Kearse & Gibbons added by _Andrey Zabolotskiy_, Sep 03 2021
%E A075324 a(26) from Alexis Langlois-Rémillard, Christoph Müßig and Érika Roldán added by _Christoph Muessig_, Aug 25 2022
%E A075324 a(27)-a(31) from Alexis Langlois-Rémillard, Christoph Müßig and Érika Roldán added by _Christoph Muessig_, Sep 19 2022