A075325 Pair the natural numbers such that the m-th pair is (r, s) where r, s and s-r are the smallest numbers which have not occurred earlier and also are not equal to the difference of any earlier pair: (1, 3), (4, 9), (6, 13), (8, 18), (11, 23), (14, 29), (16, 33), (19, 39), (21, 43), (24, 49), (26, 53), (28, 58), ... Sequence gives first term of each pair.
1, 4, 6, 8, 11, 14, 16, 19, 21, 24, 26, 28, 31, 34, 36, 38, 41, 44, 46, 48, 51, 54, 56, 59, 61, 64, 66, 68, 71, 74, 76, 79, 81, 84, 86, 88, 91, 94, 96, 99, 101, 104, 106, 108, 111, 114, 116, 118, 121, 124, 126, 128, 131, 134, 136, 139, 141, 144, 146, 148, 151, 154, 156
Offset: 1
Keywords
Examples
The first pair (1, 3) covers 1, 2, 3. The second pair is (4, 9) covering 4, 5, 9.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- Robbert Fokkink and Gandhar Joshi, Anti-recurrence sequences, arXiv:2506.13337 [math.NT], 2025. See p. 4.
Crossrefs
Programs
-
Mathematica
(* Here, the offset for (a(n)) is 0. *) z = 200; mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a = {}; b = {}; c = {}; Do[AppendTo[a, mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]]; AppendTo[b, mex[Flatten[{a, b, c}], Last[a]]]; AppendTo[c, Last[a] + Last[b]], {z}]; Take[a, 100] (* A075325 *) Take[b, 100] (* A047215 *) Take[c, 100] (* A075326 *) Grid[{Join[{"n"}, Range[0, 20]], Join[{"a(n)"}, Take[a, 21]], Join[{"b(n)"}, Take[b, 21]], Join[{"c(n)"}, Take[c, 21]]}, Alignment -> ".", Dividers -> {{2 -> Red, -1 -> Blue}, {2 -> Red, -1 -> Blue}}] (* Peter J. C. Moses, Apr 26 2018 *)
-
PARI
used = vector(500); i = 1; A = vector(80); B = A; C = A; for (n = 1, 80, while (used[i], i++); j = i + 1; while (used[j] || used [i + j], j++); A[n] = i; B[n] = i + j; C[n] = i + i + j; used[i] = 1; used[j] = 1; used[i + j] = 1); A \\ David Wasserman, Jan 16 2005
Formula
Let A(n) = A007814(n). Let B(n) = A(n) + 1 if A(n) < 2; B(n) = 0 if A(n)>=2 & A(n) is even; B(n) = 2 if A(n) >= 2 & A(n) is odd. Then a(n) = (5n+B(n)-4)/2. - John Chew (jjchew(AT)math.utoronto.ca), Jun 20 2006
Extensions
More terms from David Wasserman, Jan 16 2005
Comments