A075341 a(1) = 1, a(2n) is the smallest composite number == 1 mod (a(2n-1)) and a(2n+1) is the smallest prime == 1 (mod a(2n)).
1, 4, 5, 6, 7, 8, 17, 18, 19, 20, 41, 42, 43, 44, 89, 90, 181, 182, 547, 548, 1097, 1098, 7687, 7688, 15377, 15378, 30757, 30758, 276823, 276824, 553649, 553650, 2768251, 2768252, 8304757, 8304758, 99657097, 99657098, 199314197, 199314198
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[2] = 4; a[n_] := a[n] = Block[{k = a[n - 1] + 1, m = a[n - 1]}, If[OddQ@n, While[ !PrimeQ@k || Mod[k, m] != 1, k += m]; k, While[PrimeQ@k || Mod[k, m] != 1, k += m]; k]]; Array[a, 40] (* Robert G. Wilson v Sep 21 2006 *)
Extensions
More terms from David Wasserman, Jan 16 2005
Comments