This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075366 #10 May 18 2015 15:58:36 %S A075366 1,12,120,30,30240,5040,17297280,2162160,240240,360360,28158588057600, %T A075366 2346549004800,64764752532480000,4626053752320000,308403583488000, %U A075366 19275223968000,830034394580628357120000,46113021921146019840000 %N A075366 Smallest product (n+1)(n+2)...(n+k) that is divisible by the product of all the primes up to n. %H A075366 Reinhard Zumkeller, <a href="/A075366/b075366.txt">Table of n, a(n) for n = 1..300</a> %F A075366 If p <= n < q, where p and q are consecutive primes, then a(n) = (2p)!/n!, unless n=10. %t A075366 a75365[n_] := Module[{div, k, pr}, div=Times@@Prime/@Range[PrimePi[n]]; For[k=0; pr=1, True, k++; pr*=n+k, If[Mod[pr, div]==0, Return[k]]]]; a[n_] := Times@@Range[n+1, n+a75365[n]] %o A075366 (Haskell) %o A075366 a075366 n = a075366_list !! (n-1) %o A075366 a075366_list = 1 : f 2 1 a000040_list where %o A075366 f x pp ps'@(p:ps) %o A075366 | p <= x = f x (p * pp) ps %o A075366 | otherwise = g $ dropWhile (< pp) $ scanl1 (*) [x+1, x+2 ..] %o A075366 where g (z:zs) | mod z pp == 0 = z : f (x + 1) pp ps' %o A075366 | otherwise = g zs %o A075366 -- _Reinhard Zumkeller_, May 18 2015 %Y A075366 Cf. A075365, A075367, A075368. %Y A075366 Cf. A000040. %K A075366 nice,nonn %O A075366 1,2 %A A075366 _Amarnath Murthy_, Sep 20 2002 %E A075366 Edited by _Dean Hickerson_, Oct 28 2002