This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075368 #16 Dec 05 2023 12:05:32 %S A075368 1,6,10,5,84,84,1716,858,286,286,100776,100776,891480,891480,891480, %T A075368 445740,282861360,282861360,550835280,550835280,550835280,550835280, %U A075368 42222721680,42222721680,8444544336,8444544336,2814848112,2814848112 %N A075368 Smallest integer value of lcm(n+1, n+2, ..., n+k) (for k >= 0) divided by the product of all the primes up to n. %H A075368 David A. Corneth, <a href="/A075368/b075368.txt">Table of n, a(n) for n = 1..2236</a> %F A075368 a(n) = A075367(n)/A034386(n). %e A075368 a(3) = 10 as the product of primes <= (n = 3) is 6 and the smallest integer of the form lcm(3+1, 3+2, ..., 3+k) = lcm(4, 5, 6) = 60 giving a(3) = 60/6 = 10. - _David A. Corneth_, Dec 05 2023 %t A075368 a75365[n_] := Module[{div, k, pr}, div=Times@@Prime/@Range[PrimePi[n]]; For[k=0; pr=1, True, k++; pr*=n+k, If[Mod[pr, div]==0, Return[k]]]]; a[1]=1; a[n_] := LCM@@Range[n+1, n+a75365[n]]/Times@@Prime/@Range[PrimePi[n]] %o A075368 (PARI) %o A075368 a(n) = {if(n==1, return(1)); %o A075368 my(pp = vecprod(primes(primepi(n))), l = n+1); %o A075368 for(k = n+2, 2*n, %o A075368 l = lcm(l, k); %o A075368 if(l%pp == 0, %o A075368 return(l\pp) %o A075368 ) %o A075368 ) %o A075368 } \\ _David A. Corneth_, Dec 05 2023 %Y A075368 Cf. A075365, A075366, A075367. %K A075368 nonn,easy %O A075368 1,2 %A A075368 _Amarnath Murthy_, Sep 20 2002 %E A075368 Edited by _Dean Hickerson_, Oct 28 2002