cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075368 Smallest integer value of lcm(n+1, n+2, ..., n+k) (for k >= 0) divided by the product of all the primes up to n.

This page as a plain text file.
%I A075368 #16 Dec 05 2023 12:05:32
%S A075368 1,6,10,5,84,84,1716,858,286,286,100776,100776,891480,891480,891480,
%T A075368 445740,282861360,282861360,550835280,550835280,550835280,550835280,
%U A075368 42222721680,42222721680,8444544336,8444544336,2814848112,2814848112
%N A075368 Smallest integer value of lcm(n+1, n+2, ..., n+k) (for k >= 0) divided by the product of all the primes up to n.
%H A075368 David A. Corneth, <a href="/A075368/b075368.txt">Table of n, a(n) for n = 1..2236</a>
%F A075368 a(n) = A075367(n)/A034386(n).
%e A075368 a(3) = 10 as the product of primes <= (n = 3) is 6 and the smallest integer of the form lcm(3+1, 3+2, ..., 3+k) = lcm(4, 5, 6) = 60 giving a(3) = 60/6 = 10. - _David A. Corneth_, Dec 05 2023
%t A075368 a75365[n_] := Module[{div, k, pr}, div=Times@@Prime/@Range[PrimePi[n]]; For[k=0; pr=1, True, k++; pr*=n+k, If[Mod[pr, div]==0, Return[k]]]]; a[1]=1; a[n_] := LCM@@Range[n+1, n+a75365[n]]/Times@@Prime/@Range[PrimePi[n]]
%o A075368 (PARI)
%o A075368 a(n) = {if(n==1, return(1));
%o A075368 	my(pp = vecprod(primes(primepi(n))), l = n+1);
%o A075368 	for(k = n+2, 2*n,
%o A075368 		l = lcm(l, k);
%o A075368 		if(l%pp == 0,
%o A075368 			return(l\pp)
%o A075368 		)
%o A075368 	)
%o A075368 } \\ _David A. Corneth_, Dec 05 2023
%Y A075368 Cf. A075365, A075366, A075367.
%K A075368 nonn,easy
%O A075368 1,2
%A A075368 _Amarnath Murthy_, Sep 20 2002
%E A075368 Edited by _Dean Hickerson_, Oct 28 2002