cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075418 Sum of generalized tribonacci numbers A001644 and inverted tribonacci numbers A075298.

This page as a plain text file.
%I A075418 #9 Jun 17 2023 07:50:34
%S A075418 4,2,-2,12,12,10,54,68,108,282,422,772,1604,2674,5006,9580,16884,
%T A075418 31506,58606,105948,196508,362298,662022,1222772,2249116,4127210,
%U A075418 7605718,13984148,25701652,47311458,86994846,159975004,294336612,541281698,995529822,1831291692,3367998380,6194717674
%N A075418 Sum of generalized tribonacci numbers A001644 and inverted tribonacci numbers A075298.
%C A075418 It seems that aside from a(2) the sequence is nonnegative.
%H A075418 G. C. Greubel, <a href="/A075418/b075418.txt">Table of n, a(n) for n = 0..1000</a>
%H A075418 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 4, 1, 0, -1).
%F A075418 a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0)=4, a(1)=2, a(2)=-2, a(3)=12, a(4)=12, a(5)=10.
%F A075418 O.g.f.: (4 + 2*x - 6*x^2 - 6*x^3 + 2*x^4 + 4*x^5)/(1 - x^2 - 4*x^3 - x^4 + x^6).
%t A075418 CoefficientList[Series[(4+2x-6x^2-6x^3+2x^4+4x^5)/(1-x^2-4x^3-x^4+x^6), {x, 0, 40}], x]
%o A075418 (PARI) my(x='x+O('x^40)); Vec((4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2 -4*x^3-x^4+x^6)) \\ _G. C. Greubel_, Apr 21 2019
%o A075418 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2-4*x^3-x^4+x^6) )); // _G. C. Greubel_, Apr 21 2019
%o A075418 (Sage) ((4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2-4*x^3-x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 21 2019
%Y A075418 Cf. A001644, A075298.
%K A075418 easy,sign
%O A075418 0,1
%A A075418 Mario Catalani (mario.catalani(AT)unito.it), Sep 14 2002