cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075466 Trajectory of 266718 under the Reverse and Add! operation carried out in base 4, written in base 10.

This page as a plain text file.
%I A075466 #10 Oct 18 2019 21:14:39
%S A075466 266718,1017375,2019150,4934715,20413980,34239885,64220175,127195950,
%T A075466 321080475,1286586060,2154739965,4288508415,8571775230,21401016315,
%U A075466 85781907180,149736661725,278082371775,1369020907200,1433193762225
%N A075466 Trajectory of 266718 under the Reverse and Add! operation carried out in base 4, written in base 10.
%C A075466 266718 = A075421(358) is the smallest term > 318 of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(26) onward; the g.f. for the complete sequence is known but more than twice as big.
%H A075466 Klaus Brockhaus, <a href="/A058042/a058042.txt">On the 'Reverse and Add!' algorithm in base 2</a>
%H A075466 <a href="/index/Res#RAA">Index entries for sequences related to Reverse and Add!</a>
%F A075466 a(0), ..., a(18) as above; a(19) = 2780823717750; a(20) = 5492189757120; a(21) = 5749636151985; a(22) = 11156010444150; a(23) = 21968759028480; a(24) = 22226205423345; a(25) = 44109148986870; for n > 25 and n = 2 (mod 6): a(n) = 5*4^(2*k+14)-83865605*4^k where k = (n-2)/6; n = 3 (mod 6): a(n) = 5*4^(2*k+14)+3941683435*4^k-15 where k = (n-3)/6; n = 4 (mod 6): a(n) = 10*4^(2*k+14)+2515968150*4^k-10 where k = (n-4)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+14)-335462420*4^k where k = (n-5)/6; n = 0 (mod 6): a(n) = 20*4^(2*k+14)+3690086620*4^k-15 where k = (n-6)/6; n = 1 (mod 6): a(n) = 40*4^(2*k+14)+2012774520*4^k-10 where k = (n-7)/6. G.f.: -15*(47049901525664*x^11+23708157972464*x^10+23433347158016*x^9-46912496118440*x^8-23502049861628*x^7-23433347158016*x^6-11908468626600*x^5-6137441522940*x^4-5862630708480*x^3+11771063219370*x^2+5931333412095*x+5862630708480)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))
%e A075466 266718 (decimal) = 1001013132 -> 1001013132 + 2313101001 = 3320120133 = 1017375 (decimal).
%t A075466 NestWhileList[# + IntegerReverse[#, 4] &, 266718,  # !=
%t A075466 IntegerReverse[#, 4] &, 1, 23] (* _Robert Price_, Oct 18 2019 *)
%o A075466 (PARI) {m=266718; stop=19; c=0; while(c<stop,print1(k=m,","); rev=0; while(k>0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
%Y A075466 Cf. A075153, A075421, A075467.
%K A075466 base,nonn
%O A075466 0,1
%A A075466 _Klaus Brockhaus_, Sep 18 2002